DOC PREVIEW
UT INF 385P - The MacBook Air’s Connection to the Future of Cloud Computing

This preview shows page 1-2-3 out of 8 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 8 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 8 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 8 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 8 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

The MacBook Air’s Connection to the Future of Cloud ComputingWhite Paper:The MacBook Air’s Connection to the Future of Cloud ComputingJennifer Noble INF 385PProfessor Randolph BiasMarch 6, 2008Imagine a world where information is always accessible – music, movies,documents, and presentations are all stored online in remote servers. Sharing these itemswith collaborators does not require the need to email individual files or track multipleversions of documents. Vast collections of servers can store massive amounts of datawithout a company needing to buy a single supercomputer… and every bit of informationis available all the time through ultra-portable devices with high speed Internetconnections. Welcome to the world of cloud computing; big players like Amazon,Google, and Apple want to transform the cloud from a trendy catchphrase to reality. Butwill both consumers and companies want to shift into a fundamentally different way ofcomputing? Does the ease of shared resources overshadow the possible privacy issuesinvolved? And how can cloud computing enhance the usability of everyday tasks for theconsumer?Like its meteorological namesake, this “cloud” of computers can seem a little fuzzy at the edges. No single definition for cloud computing has been standardized; every major company invested in the development of this type of technology focuses on different aspects of the “cloud.” Some see cloud computing manifested in web-based applications while others see the cloud as a form of utility computing that processes vast amounts of data. Another group thinks the cloud is akin to parallel computing; this approach divides large problems into smaller ones that are processed concurrently (Weiss 18). Regardless of the particular definition one chooses, a single theme seems to repeat within the discussion of cloud computing; one can access more resources with less hassle.Distinguishing a “cloud” from a grouping of machines is tricky; clouds require a higher level of interoperability than a standard network. As a result, computer engineers are focusing efforts on creating a “data center” operating system that replaces the independent machines running its own copy of an OS. Essentially, this “CloudOS” can manage the resources of an entire cluster of computers more cohesively than ever before(20). This “omniscient” operating system relies on networking channels to emulate the operations of a single physical machine. In terms of usability, this can eliminate a whole spectrum of possible problems arising from the individual installations of an operating system. The cloud can avoid the inconsistencies of multiple installations of an operating system; instead, adopted standards can increase the ability of a user to trouble-shoot and manage the resources of the entire cloud. A single interface replaces the possible confusion of multiple instances, reducing the possibility of human error in administration or diagnostics. None of this comes cheap; these server clouds require immense amounts of power for both running and cooling the machines. Both Google and Amazon have built these data centers in the Pacific Northwest and Canada where hydroelectric plants provide cheaper (and greener) power. Other companies are looking at building data centers in China, the home of a rapidly expanding number of power plants (Weiss 19). The possibilities for profit are yet unexplored, but the market is there. Most companies rely on in-house data centers to use at will, but there are significant costs associated with the development and maintenance of such facilities. These include real estate, hardware, power, cooling, and upkeep of hardware. The threat of disasters necessitates back-up, redundancy, and overpowered servers. Google, IBM, and Amazon have spent countless dollars on innovating their own large-scale data centers. For these companies, a logicalextension of this investment would be to create a business model to support third party users.So, what is currently being offered in terms of cloud computing? Amazon’s Elastic Compute Cloud, or EC2, Beta program provides access to a “cloud” of computer servers, offering consumers, educators, and businesses immediate access to this type of technology. Amazon introduced this service in late 2007, and it has already seen a good bit of success. EC2 is perfect for data crunching, filling a gap between desktops and supercomputers. Now software programs can use these linked computers to scan huge data sets, such as the contents of system-wide email programs, social networks, and Wikipedia. The cloud can also launch additional machine instances of Web applications iftraffic spikes, preventing downtime within these massive programs. Amazon’s EC2 has a pay-as-you-go model, charging about fifteen cents to store a gigabyte of data for a month or ten cents an hour for processing time. Google and IBM have taken a different route to promote cloud computing; they will offer free use of a cluster of computers to the computer science departments of top American research universities (Hand 963). These companies encourage the use cloud computing for one simple reason: they have to have someone to hire. To be valuable Google employees in the future, computer science students of today need to learn how to write software that uses the interlinked computers to work in a parallel fashion. By offering these students the resources to learn how to accomplish these tasks, Google and IBM are ensuring themselves of a future workforce.Another intriguing aspect of the cloud computing world is the idea of software as service. By moving all of the processing power to an external server, one could walk around with just a portable input device. This framework is already in place today; the Web offers a multitude of applications that replace software. For many people, they only use Web-based email systems. The development of Google Documents provides a free alternative to pricy word processing programs – and Google has also introduced spreadsheet and presentation software to challenge that market of software programs. Microsoft has taken note; they have started to develop their own “cloud” to future-proof their business model. Even Adobe has created Web versions of Photoshop and Premiere in order to appeal to this new type of user. The idea of cloud computing represents a paradigm shift for the consumer. Instead of choosing option-laden machines, one can


View Full Document

UT INF 385P - The MacBook Air’s Connection to the Future of Cloud Computing

Download The MacBook Air’s Connection to the Future of Cloud Computing
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view The MacBook Air’s Connection to the Future of Cloud Computing and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view The MacBook Air’s Connection to the Future of Cloud Computing 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?