DOC PREVIEW
MIT 2 002 - GENERALIZED COORDINATE FINITE ELEMENT MODELS

This preview shows page 1-2-19-20 out of 20 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

GENERALIZEDCOORDINATEFINITEELEMENTMODELSLECTURE 457MINUTES4·1GeneralizedcoordinatefiniteelementmodelsLECTURE 4 Classificationofproblems:truss,planestress,planestrain,axisymmetric,beam,plateandshellcon-ditions:correspondingdisplacement,strain,andstressvariablesDerivationofgeneralizedcoordinatemodelsOne-,two-,three-dimensionalelements,plateandshellelementsExampleanalysisof acantileverplate,detailedderivationofelementmatricesLumpedandconsistentloadingExampleresultsSummaryofthefiniteelementsolutionprocessSolutionerrorsConvergencerequirements,physicalexplana-tions,thepatchtestTEXTBOOK:Sections:4.2.3, 4.2.4, 4.2.5, 4.2.6Examples:4.5, 4.6, 4.7, 4.8, 4.11, 4.12, 4.13, 4.14,4.15, 4.16, 4.17, 4.184-2GeneralizedcoordinatefiniteeleDlentmodelsDERIVATIONOF SPECIFICFINITEELEMENTS• Generalized coordinatefiniteelement models~(m)= iB(m)TC(m) B(m)dV(m)V(m)aW)= JH(m)TLB(m)dV(m)V(m)R(m)= f HS(m)T f S(m)dS(m)!!S (m) - -Setc.Inessence,weneedH(m) B(m) C (m)-,-'-• Convergenceofanalysis resultsAAcross sectionA-A:TXXisuniform.Allotherstresscomponentsare zero.Fig. 4.14. Variousstressandstrainconditionswithillustrative examples.(a)Uniaxialstresscondition: frameunder concentratedloads.4·3Ge.raJizedcoordiDalefiniteelementlDOIIeIsHale\I6I\\-\-1ZI\TXX' Tyy, TXYare uniformacross the thickness.Allotherstresscomponentsare zero.Fig. 4.14. (b) Planestressconditions:membrane andbeamunder in-planeactions.u(x,y),v(x,y)are non-zerow=0 , Ezz= 0Fig. 4.14.(e)Plane strain condition:long dam subjectedtowater pressure.4·4GeneralizedcoordinatefiniteelementmodelsStructureandloadingare axisymmetric.j(IIII,II\--Allotherstresscomponentsare non-zero.Fig.4.14. (d) Axisymmetric condition:cylinder under internal pressure.(before deformation)(afterdeformation)/SHELLFig. 4.14. (e) Plate and shell structures.4·5GeneralizedcoordinatefiniteelementmodelsProblemBarBeamPlane stressPlane strainAxisymmetricThree-dimensionalPlate BendingDisplacementComponentsuwu,vu,vu,vu,v,wwTable 4.2(a)Corresponding Kine-matic and Static Variables in VariousProblems.ProblemBarBeamPlane stressPlane strainAxisymmetricThree-dimensionalPlate BendingStrain Vector~T-(E"...,)[IC...,](E"...,El'l')'"7)(E...,EJ"7)'..7)[E...,E"77)'''7Eu)[E...,E"77Eu)'''7)'76)'...,)(IC...,1(771("7).auauauauNolallon:E..=ax'£7 = a/ )'''7 =ay+ax'a1w a1w a1w•••,IC...,=-dxZ'IC77= - OyZ,IC.., = 20xoyTable 4.2 (b) Corresponding Kine-matic and Static Variables in VariousProblems.4·&ProblemBarBeamPlane stressPlane strainAxisymmetricThree-dimensionalPlate BendingGeneralizedcoordinatefiniteelementmodelsStress Vector1:T[T;u,][Mn][TnTJIJIT"'JI][TnTJIJIT"'JI][TnTJIJIT"'JITn][TnTYJITnT"'JITJI'Tu][MnMJIJIM"'JI]Table4.2(e) Corresponding Kine-matic and Static VariablesinVariousProblems.ProblemMaterialMatrix.£BarBeamPlane StressEEl[1vE v 11-1':&o 01~.]Table4.3Generalized Stress-StrainMatrices for Isotropic MaterialsandtheProblemsinTable 4.2.4·7GeneralizedcoordinatefiniteelementmodelsELEMENT DISPLACEMENT EXPANSIONS:Forone-dimensionalbarelementsFor two-dimensionalelements(4.47)Forplatebendingelements2w(x,y)=Y,+Y2x+Y3Y+Y4xy+Y5x+•..(4.48)Forthree-dimensionalsolidelementsu(x,y,z)=a,+Ozx+~Y+Ci4Z +~xy+...w(x,y,z)=Y,+y2x+y3y+y4z+y5xy+...(4.49)4·8Hence, in generalu =~exGeneralizedcoordinatefiniteelementmodels(4.50)(4.51/52)(4.53/54)Example(4.55)Y.VX.Vla) Cantilever platerNodalpoint6lp9Element [email protected](bl Finite element idealizationFig. 4.5. Finite element planestress analysis; i.e.TZZ=TZy=TZX=04·9Generalizedcoordinatefiniteelementmodels2LJ2.=US--II--.......---------....~element ®Elementnodalpointno.4=structurenodalpointno.5 .Fig.4.6.Typicaltwo-dimensionalfour-node element defined in localcoordinatesystem.Forelement 2wehave[U{X,y)] (2)= H(2) uv{x,y)--whereuT=[U- 14·10GeneralizedcoordinateliniteelementmodelsToestablishH (2) weuse:or[U(X,y)]=_~l!.v(x,y)where! =[~~}!=[1x y xy]andDefiningwehaveQ =Aa.HenceH=iPA-14·11GeneralizedcoordinatefiniteelementmodelsHenceH =fl-l4and(1+x ) (Hy): : aI•••I Ia : :(1+x)(1+y):H'ZJ=[0- 0Ull:HII: HZIUJVJUzt':u. v.U2U3U4UsU6U7UsU9U1aI 0 : HIJH17:HI.H16: 00:HI.Hu:o :HZJH21:H::H:6:00:H..Ha:VI-elementdegreesoffreedomU12 U13 U14UIS-assemblagedegreesHIs:0 0 zerosOJoffreedomHzs: 0 0 zeros O2x18(a)Elementlayout(b) Local-global degrees offreedomFig. 4.7.Pressureloading onelement (m)4·12GeneralizedcoordinatefiniteelementmodelsInplane-stressconditionstheelementstrainsarewhereE -au. E _av._au+avxx- ax'yy-ay, Yxy-ayaxHencewhereI =[~10Iy'OI0 0010I0 1IX 10I4·13GeneralizedcoordinatefiniteelementmodelsACTUALPHYSICALPROBLEMGEOMETRICDOMAINMATERIALLOADINGBOUNDARYCONDITIONS1MECHANICALIDEALIZATIONKINEMATICS,e.g. trussplane stressthree-dimensionalKirchhoff plateetc.MATERIAL,e.g. isotropiclinearelasticMooney-Rivlinrubberetc.LOADING,e.g. concentratedcentrifugaletc.BOUNDARYCONDITIONS,e.g. prescribed1displacementsetc.FINITEELEMENTSOLUTIONCHOICEOFELEMENTSANDSOLUTIONPROCEDURESYIELDS:GOVERNINGDIFFERENTIALEQUATIONSOFMOTIONe.g...!..(EA.!!!)= -p(x)axaxYIELDS:APPROXIMATERESPONSESOLUTIONOFMECHANICALIDEALIZATIONFig.4.23. Finite Element SolutionProcess4·14GeneralizedcoordinatefiniteelementmodelsSECTIONERRORERROROCCURRENCEINdiscussingerrorDISCRETIZATIONuseoffiniteelement4.2.5interpolationsNUMERICALevaluationoffinite5.8.1INTEGRATIONelement matrices using6.5.3INSPACEnumericalintegrationEVALUATIONOFuseofnonlinear material6.4.2CONSTITUTIVEmodelsRELATIONSSOLUTIONOFdirecttimeintegration,9.2DYNAMICEQUILI-.modesuperposition9.4BRIUMEQUATIONSSOLUTIONOFGauss-Seidel,Newton-8.4FINITEELEr1ENTRaphson,Quasi-Newton8.6EQUATIONSBYmethods, eigenso1utions 9.5ITERATION10.4ROUND-OFFsetting-upequationsand8.5theirsolutionTable4.4Finite ElementSolution Errors4·15GeneralizedcoordinatefiniteelementmodelsCONVERGENCEAssume a compatibleelement layoutisused,then we have monotonicconvergencetothesolutionofthe problem-governing differentialequation, provided theelements contain:1)allrequiredrigidbody modes2)allrequired constantstrain states~compatibleLWlayoutCDincompatiblelayout~t:=no.ofelementsIf an incompatible elementlayoutisused, theninadditionevery patchofelements mustbe abletorepresent the constantstrain states. Then we haveconvergencebutnon-monotonicconvergence.4·16Geuralizedcoordinatefinitee1eJDeDtmodels7 "/ "'r->,;/(""1-----,IIIIIIIiI(a)Rigid body modesofa planestresselement......~_QIIII(b) Analysistoillustrate the rigidbody mode conditionRigidbodytranslationandrotation;elementmustbestress-free.Fig. 4.24.Useofplanestresselementin


View Full Document
Download GENERALIZED COORDINATE FINITE ELEMENT MODELS
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view GENERALIZED COORDINATE FINITE ELEMENT MODELS and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view GENERALIZED COORDINATE FINITE ELEMENT MODELS 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?