Unformatted text preview:

IRAF Exercise IV - Aperture PhotometryName:_____________________________________________ Due Date:__________Score ____ / 35IRAF Exercise IV - Aperture Photometry1. <1 pt> How can you tell from the image header whether CCDPROC has been run on a frame?2. <1 pt> As a follow on to the ‘set-airmass’ step: List two reasons why the blue images might need a longer exposure time to reach a similar flux level as the visual images.3. <3 pts> "Setairmass" is one way to "patch" an image header. Find two other tasks that will allow you to add, delete, or modify a keyword in an image header, and summarize briefly how these tasks work.4. <3 pts> The way that QPHOT defines an aperture and sky region differs from what we saw when we used RIMEXAMINE in a previous exercise. Review both and explain the differences briefly here. (NOTE: if you unlearn imexamine you should also separately unlearn rimexamine.)5. <2 pts> How can you find out what quantities are listed in the m920004.mag.1 file? Specifically, which column in the file lists the magnitude error?6. <5 pts> Work with TXDUMP and with just the m920004 and m920006 images. Extract the xcenter, ycenter, magnitudes, and ifilter identification for the 9 stars, and put the information into a file. Making sure you have matched the data for each star between files, list the V magnitudes, B magnitudes, and B – V magnitudes. Plot V1/14/19 1against B – V, making sure that the smallest V magnitude is at the top of the y-axis and the largest at the bottom. Attach your plot to this worksheet. SAVE YOUR X-Y COORDINATES AND MAGNITUDES FOR BOTH FILTERS FOR USE IN EXERCISE IRAF V.27. <2 pts> Show your graph to your instructor or TA and have him/her initial here: _____________Using multiple apertures for comparison of photometry resultsThe qphot task can be used to determine aperture photometry values for a set of apertures, rather than a just one single one. Load the digiphot and apphot packages, then set a list of multiple apertures:<ecl> epar qphotimage = "m920004" Input image cbox = 5. Centering box width in pixels annulus = 15 Inner radius of sky annulus in pixels dannulus = 10 Width of the sky annulus in pixels apertures = "1,2,3,4,5,10" List of photometry apertures (coords = "") Coordinate list (output = "default") Results file (plotfile = "") Plot metacode file (zmag = 25.) Zero point of magnitude scale (exposure = "exptime") Exposure time image header keyword (airmass = "airmass") Airmass image header keyword (filter = "filters") Filter image header keyword (obstime = "ut") Time of observation image header keyword (epadu = 14.) Instrument gain (interactive = yes) Interactive mode (radplots = yes) Plot radial profiles in interactive mode (verbose = no) Print messages (graphics = "stdgraph") Graphics device (display = "stdimage") Display device (icommands = "") Image cursor: [x y wcs] key [cmd] (gcommands = "") Graphics cursor: [x y wcs] key [cmd] (mode = "ql") 8. <2 pt> Run qphot on m920004 again, this time with multiple apertures. (Try killing the graphics window each time before restarting qphot). Concentrate on star #7 of the finding chart. Place the cursor on the star and hit the space bar. Fill in Table 1, where Mag(i) refers to the magnitude obtained within a radius of i pixels.Table 1. Aperture Photometry data for Object 7 in m920004.fitsX Y Sky Mag(1) Mag(2) Mag(3) Mag(4) Mag(5) Mag(10)9. <2 pts> How much more flux (in ADU’s) fell within a 5 pixel radius, compared to the flux within a 2 pixel radius? Recall that m1 – m2 = –2.5 log(f1/f2). Do not simply subtract the fluxes that the program returns; show all of your quantitative logic.3410. <2 pt> Now repeat the multi-aperture qphot measurement, but for star #9, and fill in Table 2 below. All you may need to do is place the cursor over the object and hit the space bar.Table 2. Aperture Photometry data for Object 9 in m920004.fitsX Y Sky Mag(1) Mag(2) Mag(3) Mag(4) Mag(5) Mag(10)11. <1 pt> By now you have hopefully realized that it requires a large aperture to actually integrate all the light from an object. In crowded regions, this is problematic due to other stars, and because it also folds in a lot of skyphotons that add to the noise in the measurement. As long as the Point Spread Function (PSF) is constant across the image, you can make good relative measurements (i.e. differences in magnitudes between objects) with a small aperture. Use the results from Tables 1 and 2 to complete table 3, with Dmag = mag(object 7) – mag(object 9).Table 3. Aperture Photometry comparison for Objects 7 and 9 in m920004.fitsDMag(1) DMag(2) DMag(3) DMag(4) DMag(5) DMag(10)12. <3 pts> Does the magnitude difference between objects 7 and 9 depend very strongly on the aperture chosen? Be quantitative and also include how you have defined "very strongly." You should consider the error in the magnitudes when answering this question. (For example, one could compare the range in magnitudes to the average magnitude error for these 2 stars.) Be sure to state what effect using an aperture of 1 pixel had on thefirst DMag value. 13. <3 pts> What does your answer to the previous question imply for differential photometry?514. <5 pts> This IRAF assignment is one of the hardest of the course as we take fairly sizeable leaps in using thepackages and tasks. In general and understandable terms, describe the steps needed in photometry to produce a reliable color-magnitude diagram for a globular or an open cluster. You are addressing an intelligent audience, but perhaps one where most of the participants have not gone through this process. Satisfy some or all of the learning goals stated in the tutorial within the process of your writing. (It is perfectly fine to type your essay andattach to this answer sheet. It is strongly encouraged if your handwriting is difficult to read.) We will be checking spelling and your use of the English


View Full Document

UW ASTR 480 - Aperture Photometry

Download Aperture Photometry
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Aperture Photometry and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Aperture Photometry 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?