DOC PREVIEW
HARVARD MATH 21A - surface area

This preview shows page 1 out of 2 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 2 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 2 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Math 21a Surface Area Spring, 20091In this problem, we’ll find the surface area of a sphere of radius a. We think we know thatthe answer should be 4πa2, but now we’ve defined the area of a parameterized surface to beA =ZZR|ru× rv| dA, (∗)so we should be able to make sure.(a) Use spherical coordinates to write down a parameterization of the sphere of radius a.Recall that we can use spherical coordinates to parameterize the sphere of radius a asr(φ, θ) = ha sin(φ) cos(θ), a sin(φ) sin(θ), a cos(φ)i.What values of φ and θ are needed to parameterize the entire sphere? (This will tell youthe region R over which we will integrate.)(b) Now find rφand rθusing the parameterization from part (a).(c) Compute |rφ× rθ|. You should get a2sin(φ).(d) Find the surface area of the sphere using the formula (∗).2One particular parameterization that we might take is for the graph of a function z = f (x, y).We can then replace (u, v) with (x, y), so we get the parameterizationr(x, y) = hx, y, f(x, y)i.(a) Use the above expression for r(x, y) to compute rx, ry, and |rx× ry|.(b) Use your answer to part (a) and equation (∗) to find that the surface area of the graphof the function f(x, y) isA =ZZRq1 + f2x+ f2ydA =ZZRq1 + |∇f|2dA. (∗∗)(c) Use equation (∗∗) to find the surface area of the paraboloid z = x2+ y2that lies overthe disk x2+ y2≤ 9 of radius 3.3Another particularly straightforward set of examples is surfaces of revolution. If we revolvethe graph a function f(x) (a ≤ x ≤ b) around the x-axis, we get a surface that may beparameterized byr(x, θ) = hx, f (x) cos(θ), f (x) sin(θ)i.(a) Compute rxand rθ.(b) Show that |rx× rθ| = f(x)q1 + (f0(x))2.(c) Use your answer to part (b) to deduce that the area of this surface of revolution is givenbyA = 2πZabf(x)q1 + (f0(x))2dx. (†)4Use equation (†) to compute the area of the frustrum of a coneobtained by revolving the line y = x (between x = 1 and x = 2)around the x-axis. (Note: this problem is really easy using theabove equation.).................................................................................................................................................................................................................................................................................−2−112...................................................................................................................................................................................................................................................................................................................................................................................................................................................................xy................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................5Let’s re-do Problem 1, now thinking of the sphere as a surface of revolution. Compute thesurface area of a sphere of radius a by revolving the curve y =√a2− x2(−a ≤ x ≤ a) aroundthe


View Full Document

HARVARD MATH 21A - surface area

Documents in this Course
PDE’s

PDE’s

2 pages

PDE's

PDE's

2 pages

Review

Review

2 pages

intro

intro

2 pages

curve

curve

2 pages

mid1

mid1

7 pages

p-1

p-1

6 pages

contour

contour

2 pages

practice1

practice1

10 pages

diffeq1

diffeq1

6 pages

TRACES

TRACES

2 pages

PDE's

PDE's

2 pages

Review

Review

108 pages

GRAPHS

GRAPHS

2 pages

Review

Review

4 pages

VECTORS

VECTORS

2 pages

Load more
Download surface area
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view surface area and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view surface area 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?