DOC PREVIEW
Yale ECON 510 - Problem Set 2

This preview shows page 1-2-3-4 out of 13 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Instructor : Tony Smith November 13, 2007T.A. : Evrim Aydin SaherCourse : Econ 510a (Macroeconomics)Term : Fall 2007 (second half)Problem Set 2 : Suggested Solutions1. .(a) In this case, the capital accumulation equation becomes:KC;(t+1)+ KI;(t+1)= (1  )KC;t+ (1  )KI;t+ G(KI;t; (L  LC;t))So the dynamic programming problem is :V (KC;t; KI;t) = maxfCt;Lt;KC;(t+1);KI;(t+1)g1t=0u(Ct) + V (KC;(t+1); KI;(t+1))s:t:Ct= F (KC;t; LC;t)KC;(t+1)+ KI;(t+1)= (1  )KC;t+ (1  )KI;t+ G(KI;t; (L  LC;t))Substituting in the constraints:V (KC;t; KI;t) = maxfLt;KC;(t+1)g1t=0u(F (KC;t; LC;t))+V (KC;(t+1); (1  )KC;t+ (1  )KI;t+ G(KI;t; (L  LC;t))  KC;(t+1))Our state variables are: KC;t; KI;tOur choice (control) variables are: LC;t; IC;t(b) First order conditionsWith respect to LC;t:u0(Ct)F2(KC;t; LC;t)G2(KI;t; (L  LC))= V2(KC;(t+1); KI;(t+1))With respect to KC;(t+1):V1(KC;(t+1); KI;(t+1)) = V2(KC;(t+1); KI;(t+1))And hence:V1(KC;(t+1); KI;(t+1)) =u0(Ct)F2(KC;t; LC;t)G2(KI;t; (L  LC;t)):Envelope Theorem:V1(KC;t; KI;t) = u0(Ct)F1(KC;t; LC;t) + V1(KC;(t+1); KI;(t+1))(1  )V2(KC;t; KI;t) = V2(KC;(t+1); KI;(t+1))(1   + G1(KI;t; (L  LC;t; )))Update one period:V1(KC;(t+1); KI;(t+1)) = u0(Ct+1)F1(KC;(t+1); LC;(t+1)) + V2(KC;(t+2); KI;(t+2))(1  )V2(KC;(t+1); KI;(t+1)) = V2(KC;(t+2); KI;(t+2))(1   + G1(KI;(t+1); (L  LC;(t+1))))1(c) The set of equations to determine the steady state values of capital and labor in each sector (i.e.,KC, LC, KI, LI):The Euler equations are:1 = u0(Ct+1)u0(Ct)24F1(KC;(t+1); LC;(t+1))G2(KI;t; (L  LC;t))F2(KC;t; LC;t)+ (1  )F2(KC;(t+1);LC;(t+1))G2(KI;(t+1);(LLC;(t+1)))F2(KC;t;LC;t)G2(KI;t;(LLC;t))351 = u0(Ct+1)u0(Ct)F2(KC;(t+1);LC;(t+1))G2(KI;(t+1);(LLC;(t+1)))F2(KC;t;LC;t)G2(KI;t;(LLC;t))(1  ) + G1(KI;(t+1); (L  LC;(t+1))) At the steady state:1 = u0(C )u0(C )24F1(K C; L C)G2(K I; (L  L C))F2(K C; L C)+ (1  )F2(K C;L C)G2(K I;(LL C))F2(K C;L C)G2(K I;(LL C))35= F1(K C; L C)G2(K I; (L  L C))F2(K C; L C)+ (1  )1= F1(K C; L C)G2(K I; (L  L C))F2(K C; L C)+ (1  )And1 = u0(C )u0(C )F2(K C;L C)G2(K I;(LL C))F2(K C;L C)G2(K I;(LL C))[(1  ) + G1(K I; (L  L C))]=  [(1  ) + G1(K I; (L  L C))]1= (1  ) + G1(K I; (L  L C))Therefore we have:F1(K C; L C)G2(K I; (L  L C))F2(K C; L C)+ (1  ) = (1  ) + G1(K I; (L  L C))F1(K C; L C)G1(K I; (L  L C))=F2(K C; L C)G2(K I; (L  L C))Additionally we have:V2(K C; K I) = V2(K C; K I)(1   + G1(K I; (L  L C; )))G1(K I; (L  L C; )) = 1 (1  ):Finall we have the law of motion for capital:K C+ K I= (1  )K C+ (1  )K I+ G(K I; (L  L C))(K C+ K I) = G(K I; (L  L C)):2(d) We have F (KC;t; LC;t) = KC;tL(1)C;tand G(KI;t; LI;t) = KI;tL(1)I;t:And so:F1(K C; L C) = K CL C(1)F2(K C; L C) = (1  )K CL CG1(K I; (L  L C)) = K I(L  L C)(1)G2(K I; (L  L C)) = (1  )K I(L  L C)FromG1(K I; (L  L C; )) = 1 (1  )K I(L  L C)(1)= 1 (1  )K I(L  L C)= 1 (1  )!1(1):Plugging these back intoG2(K I; (L  L C))G1(K I; (L  L C))=F2(K C; L C)F1(K C; L C)(1  )K I(LL C)K I(LL C)(1)=(1  )K CL CK CL C(1)K I(L  L C)=(1  )(1  )K CL CK CL C=(1  )(1  ) 1 (1  )!1(1):3Finally, plugging these results into the budget constraint(K C+ K I) = G(K I; (L  L C))(K C+ K I) = (K I)(L  L C)(1)(K C+ K I)(L  L C)=K I(L  L C)K CL CL C(L  L C)=1K I(L  L C)K I(L  L C)L C(L  L C)=1K I(LL C)K I(LL C)K CL C=1(1(1))(1)(1(1))1(1)(1)(1)(1(1))1(1)=(1(1))1(1)1(1(1)) 1(1)(1)(1(1))1(1)=(1  )(1  )"1 1 (1  )! 1#SoL C=(1)(1)1(1(1)) 1(1)(1)1(1(1)) 1+ 1L:If we letA =(1  )(1  )"1 1 (1  )! 1#4We haveL C=A(A + 1)LK C=(1  )(1  ) 1 (1  )!1(1)L CL I= L  L C=1(A + 1)LK I= 1 (1  )!1(1)L I:2. (a) We start with the …rst perio d ’s budget constraint:c0+ qb1= b0+ !b1= q1(b0+ !  c0) :For t = 1 we have:c1+ qb2= b1+ !b2= q1(b1+ !  c1)= q1q1(b0+ !  c0) + !  c1= q2b0+ q2! + q1!  q2c0 q1c1:For t = 2 we have:c2+ qb3= b2+ !b3= q1(b2+ !  c2)= q1q2b0+ q2! + q1!  q2c0 q1c1+ !  c2= q3b0+ q3! + q2! + q1!  q3c0 q2c1 q1c2:And so on, until we have:b(t+1)= q(t+1)b0+ !(q(t+1)+ ::: + q1) q(t+1)c0+ qtc1+ ::: + q1ctq(t+1)b(t+1)= b0+ !(1 + ::: + qt) c0+ qc1+ ::: + qtct= b0+ !tPk=0qktPk=0qkck:Taking the limit gives us:limt!1q(t+1)b(t+1)= b0+ ! limt!1tPk=0qk limt!1tPk=0qkck0 = b0+!1  q1Pt=0qtct5where we used the no-Ponzi game condition on the LHS.So the consumer’s consolidated (or lifetime) budget constraint is1Pt=0qtct= b0+!1  q:(b) The transversality condition is:limt!1tu0(c t)b t= 0or,limt!1tu0(bt qb(t+1)+ !)bt= 0:The Euler equation isqu0(bt qb(t+1)+ !) = u0(b(t+1) qb(t+2)+ !):We want to showlimt!1qtbt= 0:Note that the Euler equation holds 8t :qu0(b0 qb1+ !) = u0(b1 qb2+ !)qu0(b1 qb2+ !) = u0(b2 qb3+ !)andq2u0(b0 qb1+ !) = 2u0(b2 qb3+ !):So we haveqtu0(b0 qb1+ !) = tu0(bt qb(t+1)+ !):Multiplying both sides by btand taking limits:limt!1qtu0(b0 qb1+ !)bt= limt!1tu0(bt qb(t+1)+ !)btu0(b0 qb1+ !) limt!1qtbt= 0 (using the transversality condition).And solimt!1qtbt= 0:(c) We want to prove that a sequence fb tg1t=0= 0 that satis…es the transversality condition and the E ulerequation maximizes the consumer’s objective function, subject to the se quenc e of budget constraintsand the nPg condition.Modi…ed


View Full Document

Yale ECON 510 - Problem Set 2

Download Problem Set 2
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Problem Set 2 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Problem Set 2 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?