Unformatted text preview:

Slide 1Test 2 – Tuesday 05Apr11npn BJT currents in the forward active region ©RLCSlide 4Slide 5Slide 6Slide 7Slide 8E-M model equationsEbers-Moll Model (Neglecting G-R curr)E-M linking current modelE-M linking current model (cont)E-M linking current model (cont)More non-ideal effects in BJTsSlide 15FA npn figure of merit – emitter efficiencyFA npn figure of merit – base transport factorFA npn figure of merit – recombination factorCommon base current gain, aFCommon base current gain, aF (continued)Common emitter current gain, bFCommon base current gain, aF (cont.)Common emitter current gain, bFReferencesEE 5340Semiconductor Device TheoryLecture 19 – Spring 2011Professor Ronald L. [email protected]://www.uta.edu/ronc©rlc L19-31Mar20112Test 2 – Tuesday 05Apr11•11 AM Room 129 ERB•Covering Lectures 11 to19•Open book - 1 legal text or ref., only.•You may write notes in your book.•Calculator allowed•A cover sheet will be included with full instructions. For examples see http://www.uta.edu/ronc/5340/tests/.npn BJT currents in the forward active region ©RLC©rlc L19-31Mar20113IC = JCACIB=-(IE+IC )JnEJnCIE = -JEAEJRB=JnE-JnCJpEJGCJREJpC©rlc L19-31Mar20114E current equations mode npn BJT (w/o gen/rec)         ditto. , L/xsinhV/VfexpL/xtanhV/VfexpLnqDJdir. x' in , 1VVexpL/xtanhLpqDJxxnqDJ- ,x''xp-qDJBBtBCBBtBEBB0BnEtBEEEEE0EpE0xBBnE0x'EEpE©rlc L19-31Mar20115C current equations in npn BJT (w/o gen/rec)         BBtBCBBtBEBB0BnCtBCCCCC0CpCxxBBnC0x"CCpCLxVVfLxVVfLnqDJ1VVLxLpqDJ-xxnqDJ- ,x"xpqDJ-B/tanh/exp/sinh/expexp/tanh"©rlc L19-31Mar20116Ebers-Moll Model(Neglecting G-R curr)(Fig. 9.30*)-JEAE=IEJCAC=IC©rlc L19-31Mar2011Source of Ebers-Moll Equations (E)           tBEFFBBBB0BtBCRREESBBBB0BEEEE0EESBBtBCBBtBEBB0BnEtBEEEEE0EpEEEnEpEEV/VfexpJ L/xsinhLnqDV/VfexpJAIL/xtanhLnqDL/xtanhLpqDJL/xsinhV/VfexpL/xtanhV/VfexpLnqDJ1VVexpL/xtanhLpqDJA/IJJJαα7©rlc L19-31Mar2011Source of Ebers-Moll Equations (C)          tBCRRBBBB0BtBEFFCCSBBBB0BCCCC0CCSBBtBEBBtBCBB0BnCtBCCCCC0CpCCCnCpCCV/VfexpJ L/xsinhLnqDV/VfexpJAIL/xtanhLnqDL/xtanhLpqDJL/xsinhV/VfexpL/xtanhV/VfexpLnqDJ1VVexpL/xtanhLpqDJ-A/IJJJαα8©rlc L19-31Mar2011E-M model equationsBBBC2iCSRSESFBBBE2iStBCCSRtBEESEtBEESFtBCCSCxNDAqnIIIxNDAqnI gives iprelationsh yreciprocit TheVVfIVVfIIVVfIVVfIIexpexpexpexp9©rlc L19-31Mar2011Fig. 9.30*-JEAE = IEJCAC = ICEBCaRIRaFIFEbers-Moll Model (Neglecting G-R curr)10©rlc L19-31Mar2011E-M linking current modelECCCCTECI-IIICBtBCRSRECIVVfexpIItBEFSFCCEBVVfexpIIIBEC11©rlc L19-31Mar2011tBCtBESECtBCStBEFSEtBEStBCRSCSVVexpVVexpIIbranch E-C the links"" that current TheVVfexpIVVfexpIIVVfexpIVVfexpIIbecome eqns. M-E the ,I of terms In12E-M linking current model (cont)©rlc L19-31Mar2011E-M linking current model (cont)EBECECBECCFFFtBEFSEBRRRtBCRSCBI-II andIII sdefinition with eqns M-E the for values same the give still 1 with VVfexpII& 1 with VVfexpII:Similarly13©rlc L19-31Mar201114More non-ideal effects in BJTsaBase-width modulation (FA: xB changes with changes in VBC)aCurrent crowding in 2-dim base•High-level injection (minority carriers g.t. dopant - especially in the base).•Emitter Bandgap narrowing (NE ~ density of states at cond. band. edge)•Junction breakdown at BC junction©rlc L19-31Mar201115Recombination/GenerationCurrents (FA) CBCBBCeff,1genBCeff,BCbiCBCgenBCiGC1recBEtBEreciBERENNNNN and rate, ionrecombinat the is and DR CB the is qNVV2W where ,2WqnJ.rate ionrecombinat the is and DR EB the is W where ,V2Vexp2nqWJ©rlc L19-31Mar201116FA npn figure of merit – emitter efficiency  1L/x and L/x if ,xDNxDN1L/xtanhLDnL/xtanhLDp1VV if ,J/J11JJJEEBB1EBEBEB1EEEB0BBBBE0EtBEnEPEPEnEnE©rlc L19-31Mar201117FA npn figure of merit – base transport factor     2BBBBtBEBBtBETBBtBCtBEnEnCTLx1Lx0Lx , Lx1LxVV1LxVVLx and VV , VV For . JJ factor, transport base Thecoshlim/cosh/cosh/exp/cosh/exp©rlc L19-31Mar201118FA npn figure of merit – recombination factorBB1tBE0BBOBBEinE10BEtBE0iBERRnEnEpERnEpEnELx for ,V2VexpDn2xxn1,J from rate, ionrecombinat the is and DR EB the is x where ,V2Vexp2nqxJJJJJJJJJ factor, Recomb©rlc L19-31Mar201119Common base current gain, aFTpEREnEpEnEnEnCpEnEnEEpCGCpEREnEnCECpEREnEpCGCnCEC0JJJJJJJJJJ asFactors .I of fctns not are J and J since , JJJJII :signal smallJJJJJJII gain, current DCgaTd©rlc L19-31Mar201120Common base current gain, aF (continued)     


View Full Document

UT Arlington EE 5340 - EE 5340 Lecture 19

Download EE 5340 Lecture 19
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view EE 5340 Lecture 19 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view EE 5340 Lecture 19 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?