DOC PREVIEW
TAMU MATH 311 - Lecture3-6web

This preview shows page 1-2-3-4-5 out of 15 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MATH 311-504Topics in Applied MathematicsLecture 3-6:The Gram-Schmidt process (continued).Orthogonal systemsLet V be a vector space with an inner product h·, ·iand the induced norm k · k.Definition. A nonempty set S ⊂ V is called anorthogonal system if all vectors in S are mutuallyorthogonal. That is, hx, yi = 0 for any x, y ∈ S,x 6= y.An orthogonal system S ⊂ V is calledorthonormal if kxk = 1 for any x ∈ S.Theorem Any orthogonal system without zerovector is a li nearly independent set.Orthogonal projectionLet V be an inner product space.Let x, v ∈ V , v 6= 0. Then p =hx, vihv, viv is theorthogonal pr ojection of the v ector x onto thevector v. That is, the remainder o = x − p isorthogonal to v.If v1, v2, . . . , vnis an orthogonal set of vectors thenp =hx, v1ihv1, v1iv1+hx, v2ihv2, v2iv2+ ··· +hx, vnihvn, vnivnis the orthogonal projection of the vector x ontothe subspace spanned by v1, . . . , vn. That is, theremainder o = x − p is orthogonal to v1, . . . , vn.The Gram-Schmidt orthogonalization processLet V be a vector space with an inner product.Suppose x1, x2, . . . , xnis a basis f or V . Letv1= x1,v2= x2−hx2, v1ihv1, v1iv1,v3= x3−hx3, v1ihv1, v1iv1−hx3, v2ihv2, v2iv2,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vn= xn−hxn, v1ihv1, v1iv1− ··· −hxn, vn−1ihvn−1, vn−1ivn−1.Then v1, v2, . . . , vnis an orthogonal basis for V .Any basisx1, x2, . . . , xn−→Orthogonal basisv1, v2, . . . , vnProperties of the Gram-Schmidt process :• vk= xk− (α1x1+ ··· + αk −1xk −1), 1 ≤ k ≤ n;• the span of v1, . . . , vkis the same as the spanof x1, . . . , xk;• vkis orthogonal to x1, . . . , xk −1;• vk= xk− pk, where pkis the orthogonalpro jection of the vector xkon the subs pace spannedby x1, . . . , xk −1;• kvkk is the distance f rom xkto the subspacespanned by x1, . . . , xk −1.Problem. Find the distance from the pointy = (0, 0, 0, 1) to the subspace Π ⊂ R4spanned byvectors x1= (1, −1, 1, −1 ), x2= (1, 1, 3, −1 ), andx3= (−3, 7, 1, 3 ).Let us apply the Gram -Schmidt process to vectorsx1, x2, x3, y. We should obtain an orthogonalsystem v1, v2, v3, v4. The desired distance will be|v4|.x1= (1, −1, 1, −1 ), x2= (1, 1, 3, −1),x3= (−3, 7, 1, 3 ), y = (0, 0, 0, 1).v1= x1= (1, −1, 1, −1 ),v2= x2−hx2, v1ihv1, v1iv1= (1, 1, 3, −1 )−44(1, −1, 1, −1)= (0, 2, 2, 0 ),v3= x3−hx3, v1ihv1, v1iv1−hx3, v2ihv2, v2iv2= (−3, 7, 1, 3 ) −−124(1, −1, 1, −1) −168(0, 2, 2, 0)= (0, 0, 0, 0 ).The Gram-Schmidt process can be used to checklinear independence o f vector s !The vector x3is a linear combination of x1and x2.Π is a plane, not a 3-dimensional subspace.We sho uld orthogonalize vector s x1, x2, y.v4= y −hy, v1ihv1, v1iv1−hy, v2ihv2, v2iv2= (0, 0, 0, 1 ) −−14(1, −1, 1, −1) −08(0, 2, 2, 0)= (1/4, −1/4, 1 /4, 3/4).|v4| =14, −14,14,34=14|(1, −1, 1, 3)| =√124=√32.Problem. Find the distance from the pointz = (0, 0, 1, 0) to the plane Π that passes throughthe poi nt x0= (1, 0, 0, 0) and is par allel to thevectors v1= (1, −1, 1, −1 ) and v2= (0, 2, 2, 0 ).The plane Π is not a subspace of R4as it does notpass through the or igin. Let Π0= Span(v1, v2).Then Π = Π0+ x0.Hence the distance from the point z to the plane Πis the same as the distance from the point z − x0to the pl ane Π0.We shall apply the Gram-Schmidt pr ocess to vectorsv1, v2, z − x0. This will yield an orthogonal sys temw1, w2, w3. The desi red distance wil l be |w3|.v1= (1, −1, 1, −1 ), v2= (0, 2, 2, 0), z − x0= ( −1, 0, 1, 0).w1= v1= (1, −1, 1, −1 ),w2= v2−hv2, w1ihw1, w1iw1= v2= (0, 2, 2, 0 ) as v2⊥ v1.w3= (z − x0) −hz − x0, w1ihw1, w1iw1−hz − x0, w2ihw2, w2iw2= (−1, 0, 1, 0 ) −04(1, −1, 1, −1) −28(0, 2, 2, 0)= (−1, −1/2, 1/2, 0).|w3| =−1, −12,12, 0=12|(−2, −1, 1, 0)| =√62=r32.Modifications of the Gram - Schmidt processThe first modi fication combines orthogonalizationwith normalization. Suppose x1, x2, . . . , xnis abasis for an inner product space V . Letv1= x1, w1=v1kv1k,v2= x2− hx2, w1iw1, w2=v2kv2k,v3= x3− hx3, w1iw1− hx3, w2iw2, w3=v3kv3k,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vn= xn− hxn, w1iw1− ··· −hxn, wn−1iwn−1,wn=vnkvnk.Then w1, w2, . . . , wnis an orthonormal basis for V .Modifications of the Gram - Schmidt processFurther modification is a r ecur s ive pro ces s which ismore stable to roundoff errors than the originalprocess. Suppose x1, x2, . . . , xnis a basis f or aninner pr oduct space V . Letw1=x1kx1k,x′2= x2− hx2, w1iw1,x′3= x3− hx3, w1iw1,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .x′n= xn− hxn, w1iw1.Then w1, x′2, . . . , x′nis a basis f or V , k w1k = 1,and w1is orthogonal to x′2, . . . , x′n. Now repeat theprocess with vectors x′2, . . . , x′n, and so on.Problem. Approximate the functio n f (x) = exonthe interval [−1, 1] by a quadratic polynomial.The best approximation would be a polynomial p(x)that minimizes the distance relative to the uniformnor m:kf − pk∞= max|x |≤1|f (x) − p(x)|.However there is no analy tic way to find such apolynomial. Instead, we ar e going to find a “leastsquares” approximation that minimizes the integralnor mkf − pk2=Z1−1|f (x) − p(x)|2dx1/2.The norm k · k2is induced by the inner producthg, hi =Z1−1g(x)h(x) dx.Therefore kf − pk2is minimal if p is theorthogonal projection of the f uncti on f on thesubspace P2of quadratic polynom ials.We sho uld apply the Gram-Schmidt process to thepolynomials 1, x, x2which form a basis f or P2.This would yield an orthogonal basis p0, p1, p2.Thenp(x) =hf , p0ihp0, p0ip0(x) +hf , p1ihp1, p1ip1(x) +hf , p2ihp2,


View Full Document

TAMU MATH 311 - Lecture3-6web

Download Lecture3-6web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture3-6web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture3-6web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?