DOC PREVIEW
SSU ES 400 - Chapter 3 CT LTI Systems

This preview shows page 1-2-3-25-26-27 out of 27 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 27 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 27 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 27 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 27 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 27 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 27 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 27 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Chapter 3A Continuous-Time SystemLTI SystemsConvolution IntegralSlide 5Slide 6Slide 7Slide 8Convolution Integral - PropertiesSlide 10Simple ExampleExample 1Example 1 – Cont.Example 1 – Cont. Graphical Representation (similar)Slide 15Example 2Example – Cont.Another ExampleProperties of CT LTI SystemsExampleDifferential-Equations ModelsIs the First-Order DE Linear?ExampleSolution of DESlide 25Slide 26Schaum’s ExamplesChapter 3CT LTI SystemsUpdated: 9/16/13A Continuous-Time System•How do we know the output?System X(t) y(t)LTI Systems•Time Invariant –X(t) y(t) & x(t-to)  y(t-to) •Linearity–a1x1(t)+ a2x2(t) a1y1(t)+ a2y2(t)–a1y1(t)+ a2y2(t)= T[a1x1(t)+a2x2(t)]•Meet the description of many physical systems•They can be modeled systematically –Non-LTI systems typically have no general mathematical procedure to obtain solutionWhat is the input-output relationship for LTI-CT Systems?•An approach (available tool or operation) to describe the input-output relationship for LTI Systems•In a LTI system t) h(t) –Remember h(t) is T[t)]–Unit impulse function  the impulse response•It is possible to use h(t) to solve for any input-output relationship•One way to do it is by using the Convolution Integral Convolution IntegralLTI SystemX(t)=(t)y(t)=h(t)LTI System: h(t)X(t) y(t)Convolution Integral•Remember•So what is the general solution for LTI SystemX(t)=A(t-kto) y(t)=Ah(t-kto)LTI SystemX(t) y(t)?Convolution Integral•Any input can be expressed using the unit impulse function)()1)(()()()()()()()()()()()()()()()(txtxdttxdtxdttxtttxtttxtdttttttooooodtxtx )()()( LTI SystemX(t) y(t)Sifting PropertyProof:toand integrate by dConvolution Integral•Given•We obtain Convolution Integral•That is: A system can be characterized using its impulse response: y(t)=x(t)*h(t) LTI SystemX(t) y(t) dthxtydtTxtyLinearitydtxTtytTthtTthtxTty)()()()()()(:)()()()}({)()}({)()}({)(LTI System: h(t)X(t) y(t)Do not confuse convolution with multiplication!y(t)=x(t)*h(t)By definitionConvolution IntegralLTI System: h(t)X(t) y(t)Convolution Integral - Properties•Commutative•Associative •Distributive •Thus, using commutative property: dtxhdthxtx )()()()()( )](*)([)](*)([)]()([*)()](*)([*)()(*)](*)([)(*)()(*)(21212121thtxthtxththtxththtxththtxtxththtxNext: We draw the block diagram representation!Convolution Integral - Properties)](*)([)](*)([)]()([*)()](*)([*)()(*)](*)([)(*)()(*)(21212121thtxthtxththtxththtxththtxtxththtx•Commutative•Associative •DistributiveSimple Example•What if a step unit function is the input of a LTI system?•S(t) is called the Step Response LTI Systemu(t) y(t)=S{u(t)}=s(t)dttsdttythNotedhdtuhdthutstytuthtxthtstytuStyt/)(/)()(:)()()()()()()()()()()()()()}({)(Step response can be obtained by integrating the impulse response!Impulse response can be obtained by differentiating the step responseExample 1•Consider a CT-LTI system. Assume the impulse response of the system is h(t)=e^(-at) for all a>0 and t>0 and input x(t)=u(t). Find the output. h(t)=e^-at u(t) y(t)  )()1(1)1(1)()()()()()()()()()(0tueaeadedtuuedtuhtytuthtxthtyatattaaDraw x(), h(), h(t-),etc.  next slide Because t>0The fact that a>0 is not an issue!Example 1 – Cont. y(t)t>0t<0Remember we are plotting it over and t is the variableU(-(-t))U(-(-t))*  )()1(1)1(1)()()()()()()()()()(0tueaeadedtuuedtuhtytuthtxthtyatattaaty(t); for a=3tExample 1 – Cont. Graphical Representation (similar)http://www.wolframalpha.com/input/?i=convolution+of+two+functions&lk=4&num=4&lk=4&num=4http://www.wolframalpha.com/input/?i=convolution+of+two+functions&lk=4&num=4&lk=4&num=4a=1In this case!Example 1 – Cont. Graphical Representation (similar)http://www.jhu.edu/signals/convolve/http://www.jhu.edu/signals/convolve/Note in our caseWe have u(t) rather than rectangular function!Note in our caseWe have u(t) rather than rectangular function!Example 2•Consider a CT-LTI system. Assume the impulse response of the system is h(t)=e^-at for all a>0 and t>0 and input x(t)= e^at u(-t). Find the output. h(t)=e^-at x(t) y(t)            021)(21]01[21021210)()()()()()()()()()(0222)(aeatyeaaedeeteaeaedeetdtueuedthxtytuthtxthtytaatataatatatattaattaaDraw x(), h(), h(t-),etc.  next slide Note that for t>0; x(t) =0; so the integration can only be valid up to t=0Example – Cont.021)()()()()()(aeatytuthtxthtyta*h(t)=e^-at u(t)x(t)= e^at u(-t)dtxhtytuthtxthty)()()()()()()()(?Another ExamplenotesProperties of CT LTI Systems•When is a CT LTI system memory-less (static)•When does a CT LTI system have an inverse system (invertible)?•When is a CT LTI system considered to be causal? Assuming the input is causal:•When is a CT LTI system considered to be Stable? )()()()( tKxtytKth )()(*)( tththidtxhdthxtytt)()()()()(00notesdtthty )()(Example•Is this an stable system?•What about this? )()(3tuetht)()(3tuethtnotes3/1)()()(033dtedttuedtthtyttDifferential-Equations Models •This is a linear first order differential equation with constant coefficients (assuming a and b are constants)•The general nth order linear DE with constant equations isIs the First-Order DE Linear? •Consider•Does a1x1(t)+ a2x2(t) a1y1(t)+ a2y2(t)?•Is it time-invariant? Does input delay results in an


View Full Document

SSU ES 400 - Chapter 3 CT LTI Systems

Download Chapter 3 CT LTI Systems
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Chapter 3 CT LTI Systems and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Chapter 3 CT LTI Systems 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?