DOC PREVIEW
CR MATH 55 - Double Pendulum

This preview shows page 1-2-19-20 out of 20 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Double PendulumJosh AlticMay 15, 2008Josh Altic Double PendulumPositionx1= L1sin(θ1)x2= L1sin(θ1) + L2sin(θ2)y1= −L1cos(θ1)y2= −L1cos(θ1) − L2cos(θ2)x1x2y1y2θ1m1L1L2θ2m2OJosh Altic Double PendulumPotential Energy: the sum of the potential energy of eachmassP = m1gy1+ m2gy2P = −m1gL1cos(θ1) − m2g (L1cos(θ1) + L2cos(θ2))Josh Altic Double PendulumKinetic Energy in GeneralWe know thatK = 1/2mv2.Which brings us toK = 1/2m( ˙x2+ ˙y2).Josh Altic Double PendulumKinetic Energy in the double pendulum systemK = 1/2m1( ˙x21+ ˙y21) + 1/2m2( ˙x22+ ˙y22).position:x1= L1sin(θ1)x2= L1sin(θ1) + L2sin(θ2)y1= −L1cos(θ1)y2= −L1cos(θ1) − L2cos(θ2)differentiating:˙x1= L1cos(θ1)˙θ1˙x2= L1cos(θ1)˙θ1+ L2cos(θ2)˙θ2˙y1= L1sin(θ1)˙θ1˙y2= L1sin(θ1)˙θ1+ L2sin(θ2)˙θ2K = 1/2m1˙θ21L21+ 1/2m2[˙θ21L21+˙θ22L22+ 2˙θ1L1˙θ1L2cos(θ1− θ2)].Josh Altic Double PendulumLagrangian in GeneralThe Lagrangian(L) of a system is defined to be the difference ofthe kinetic energy and the potential energy.L = K − P.For the Lagrangian of a system this Euler-Lagrange differentialequation must be true:ddt∂L∂˙θ−∂L∂θ= 0Josh Altic Double Pendulumthe Lagrangian of our double pendulum systemK = 1/2m1˙θ21L21+ 1/2m2[˙θ21L21+˙θ22L22+ 2˙θ1L1˙θ2L2cos(θ1− θ2)].P = −(m1+ m2)gL1cos(θ1) − m2L2g cos(θ2)In our case the Lagrangian isL = 1/2(m1+ m2)L21˙θ21+ 1/2m2L22˙θ22+ m2L1L2˙θ1˙θ2cos(θ1+ θ2)+(m1+ m2)gL1cos(θ1) + m2L2g cos(θ2).Josh Altic Double PendulumPartials of the Lagrangian for θ1L = 1/2(m1+ m2)L21˙θ21+ 1/2m2L22˙θ22+ m2L1L2˙θ1˙θ2cos(θ1− θ2)+(m1+ m2)gL1cos(θ1) + m2L2g cos(θ2)Thus:∂L∂θ1= −L1g(m1+ m2) sin(θ1) − m2L1L2˙θ1˙θ2sin(θ1− θ2)∂L∂˙θ1= (m1+ m2)L21˙θ1+ m2L1L2˙θ2cos(θ1− θ2)ddt∂L∂˙θ1= (m1+ m2)L21¨θ1+ m2L1L2¨θ2cos(θ1− θ2)−m2L1L2˙θ2sin(θ1− θ2)(˙θ1−˙θ2)Josh Altic Double PendulumSubstituting into the Euler-Lagrange Equationddt∂L∂˙θ−∂L∂θ= 0(m1+ m2)L21¨θ1+ m2L1L2¨θ2cos(θ1− θ2) + m2L1L2˙θ22sin(θ1− θ2)+gL1(m1+ m2) sin(θ1) = 0Simplifying and Solving for¨θ1:¨θ1=−m2L2¨θ2cos(θ1− θ2) − m2L2˙θ22sin(θ1− θ2) − (m1+ m2)g sin(θ1)(m1+ m2)L1Josh Altic Double PendulumPartials for θ2Once again the Lagrangian of the system isL = 1/2(m1+ m2)L21˙θ21+ 1/2m2L22˙θ22+ m2L1L2˙θ1˙θ2cos(θ1− θ2)+(m1+ m2)gL1cos(θ1) + m2L2g cos(θ2)∂L∂θ2= m2L1L2˙θ1˙θ2sin(θ1− θ2) − L2m2g sin(θ2)∂L∂˙θ2= m2L22˙θ2+ m2L1L2˙θ1cos(θ1− θ2)ddt∂L∂˙θ2= m2L22¨θ2+ m2L1L2¨θ1cos(θ1− θ2)−m2L1L2˙θ1sin(θ1− θ2)(˙θ1−˙θ2)Josh Altic Double PendulumSubstituting into the Euler-Lagrange equation for θ2ddt∂L∂˙θ−∂L∂θ= 0L2¨θ2+ L1¨θ1cos(θ1− θ2) − L1˙θ21sin(θ1− θ2) + g sin(θ2) = 0.¨θ2=−L1¨θ1cos(θ1− θ2) + L1˙θ21sin(θ1− θ2) − g sin(θ2)L2.Josh Altic Double Pendulumtwo dependent differential equationsWe now have two equations that both have¨θ1and¨θ2in them.¨θ1=−m2L2¨θ2cos(θ1− θ2) − m2L2˙θ22sin(θ1− θ2) − (m1+ m2)g sin(θ1)(m1+ m2)L1¨θ2=−L1¨θ1cos(θ1− θ2) + L1˙θ21sin(θ1− θ2) − g sin(θ2)L2.Josh Altic Double Pendulumcreating two second order differential equations¨θ1=−m2L1˙θ21sin(θ1− θ2) cos(θ1− θ2) + gm2sin(θ2) cos(θ1− θ2)−m2L2˙θ22sin(θ1− θ2) − (m1+ m2)g sin(θ1)L1(m1+ m2) − m2L1cos2(θ1− θ2)¨θ2=m2L2˙θ22sin(θ1− θ2) cos(θ1− θ2) + g sin(θ1) cos(θ1− θ2)(m1+ m2)+ L1˙θ21sin(θ1− θ2)(m1+ m2) − g sin(θ2)(m1+ m2)L2(m1+ m2) − m2L2cos2(θ1− θ2)Josh Altic Double Pendulumconverting to a system of first order differential equationsIf I define new variables for θ1,˙θ1,θ2and˙θ2I can construct asystem of four first order differential equations that I can thensolve numerically.This gives mez1= θ1z2= θ2z3=˙θ1z4=˙θ2.differentiating I get˙z1=˙θ1˙z2=˙θ2˙z3=¨θ1˙z4=¨θ2.Josh Altic Double PendulumA system of four first order differential equations˙z1=˙θ1˙z2=˙θ2˙z3=−m2L1z24sin(z1− z2) cos(z1− z2) + gm2sin(z2) cos(z1− z2)−m2L2z24sin(z1− z2) − (m1+ m2)g sin(z1)L1(m1+ m2) − m2L1cos2(z1− z2).˙z4=m2L2z24sin(z1− z2) cos(z1− z2) + g sin(z1) cos(z1− z2)(m1+ m2)+L1z24sin(z1− z2)(m1+ m2) − g sin(z2)(m1+ m2)L2(m1+ m2) − m2L2cos2(z1− z2).Josh Altic Double Pendulumexample of cyclical behavior of the system−1.5 −1 −0.5 0 0.5 1 1.5−0.500.511.5x1 and x2y1 and y2 m1m2Josh Altic Double Pendulumexample of cyclical behavior of the system−2 −1 0 1 2−2−1.5−1−0.500.511.5x1 and x2y1 and y2 m1m2Josh Altic Double Pendulumexample of nearly cyclical behavior of the system−2 −1 0 1 2−1.5−1−0.500.511.52x1 and x2y1 and y2 m1m2Josh Altic Double Pendulumexample of nearly cyclical behavior of the system−2 −1 0 1 2−1.5−1−0.500.511.52x1 and x2y1 and y2 m1m2Josh Altic Double PendulumExample of Chaotic behavior of the system−2 −1 0 1 2−1.5−1−0.500.51x1 and x2y1 and y2 m1m2Josh Altic Double


View Full Document

CR MATH 55 - Double Pendulum

Download Double Pendulum
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Double Pendulum and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Double Pendulum 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?