Berkeley ELENG 210 - Poynting’s Theorem, Time- Harmonic EM Fields

Unformatted text preview:

Copyright 2006 Regents of University of California1EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06EE243 Advanced Electromagnetic TheoryLec # 10: Poynting’s Theorem, Time-Harmonic EM Fields• Poynting’s Theorem Conservation of energy and momentum• Poynting’s Theorem for Linear Dispersive Media• Poynting’s Theorem for Time-Harmonic Fields • Definition of Impedance and Admittance• Foster’s Reactance Theorem • Lorentz ReciprocityReading: Jackson Ch 6.7-6. 9 (skip 6.10)Collin pp 2.12, 4.3, 4.4Copyright 2006 Regents of University of California2EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Overview• Starting from the work done on a current source it is possible to develop a conservation of energy that includes the flow E cross H (Poynting’s Vector).• This approach generalizes to– Momentum using q(E + v cross B)– (Phasor notation and even/odd consequences )– Linear dispersive media– Time-harmonic fields– Reactance has positive slope– ReciprocityCopyright 2006 Regents of University of California3EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Work done on Source J by Field E• Work done by fields on sources•Replace J• Use integration by parts like vector idenity• Interpretation: Work done by fields on sources equals the energy flow into the voume plus the decrease in energy stored in the fields in the volume()()()())(21)(33333HBDEuHEStuSEJxdtDHtDEHExdEJHEEHHExdtDEHExdEJxdEJVVVVV⋅+⋅=×=∂∂−⋅−∇=⋅⎥⎦⎤⎢⎣⎡∂∂⋅+∂∂⋅+×⋅∇−=⋅×∇⋅−×∇⋅=×⋅∇⎥⎦⎤⎢⎣⎡∂∂⋅−×∇⋅=⋅⋅∫∫∫∫∫Copyright 2006 Regents of University of California4EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Linear Momentum• Force on particle• Momentum = force/time• Substitute• Many manipulations• Integration by parts and Div theorem• Define momentum g• Interpretation: Rate of change in mechanical momentum plus rate of change in linear momentum in volume is equal to flow of mentum across the surface into the volume.()boundaryacrossflowtermsHEcgdatermsxdBEdtddtdPtEBJExdBJEdtdPBvEqFVVmechVmech__1)(1)()(2300003=×==×+∂∂−×∇==×+=×+=∫∫∫∂εεµερρCopyright 2006 Regents of University of California5EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Fourier Representation Properties• Here f is any function• Fourier Representation• Fourier Spectrum• When f is real f(–ω) = f*(ω)),(),(),(),(),(),(21),(),,(),,(),,(),(*ωωωωπεωωωxfdwetxfxfdwetxfxfdwexftxfetctxtxHtxEtxftititi==−===−∞∞−∞∞−−∞∞−∫∫∫Copyright 2006 Regents of University of California6EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Fourier Representation Implications• Real nature of signals gives analytical properties to spectrum in the complex plane()())()()()()()()()(),(),(),(),(),(),(),(),(),(),(**********ωωωωωωωωωωωεωωωωωεωωωωZIVIVZIIVVxxExDxExDxxDxDxExE==−−=−=−=−==−−=−=−=−Copyright 2006 Regents of University of California7EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Fourier Representation Implications (Cont.)• Real nature of signals gives analytical properties to spectrum in the complex plane• Representation for R and X contain only even and odd powers of ω• Same is true for ε(ω)() () ()()()122***)()()()()()(+∑∑==+=+===−−=−nnnnXXRRjoddevenjXRZZIVIVZωωωωωωωωωωωωωCopyright 2006 Regents of University of California8EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Linear Dispersive Media• Constitutive relationship• Real function constraint• Substitute definitions using complex conjugate • Split into two equal parts• Make narrowband approximation() ()[]()[]()[]() ()[]()[][]() (){}()[]{} ( )()( ) ()()() ()()( ) ()()()()titieEddiEddtDEddiEiiEEiEeEiEddtDEωωωωωωωεωωωωεωωωωωωεωωωωεωωωεωωωεωωωωεωωωωεωωω′−−′−−⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡′−−′−′=∂∂⋅⎥⎦⎤⎢⎣⎡′−−→⋅′′+−′→⋅−′→⋅−′−′=∂∂⋅∫∫∫∫*****ImIm2)(21Copyright 2006 Regents of University of California9EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Linear Dispersive Media (Cont.)()()()()() ()()() ()()()()()()txHtxHtxEtxEEJStutxHtxHddtxEtxEddututxHtxHtxEtxEtBHtDEeffeffeff,,)(Im,,)(Im,,)(Re21,,)(Re21,,)(Im,,)(Im0000000000⋅−⋅−⋅−=⋅∇+∂∂⋅⎥⎦⎤⎢⎣⎡+⋅⎥⎦⎤⎢⎣⎡=∂∂+⋅+⋅=∂∂⋅+∂∂⋅ωµωωεωωωωµωωωεωµωωεωCopyright 2006 Regents of University of California10EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Time-Harmonic Fields• E is represented by a complex number called a phasor (when it rotates)• Products have a time independent (time-avereage) and a double frequency part()()[]() ()[]titixitiEeJEJEJtixxEeexEtxEeωωφωωφ2*00Re21)cos(Re),(−−−⋅+⋅=⋅−==Copyright 2006 Regents of University of California11EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Time-Harmonic Poynting’s Theorem• Real Part = Time-average• Imy Part is double frequency()()()()022141412133***=⋅+−+⋅⋅=⋅=×=∫∫∫ndaSxdwwixEdJHBwDEwHESSVmeVmeωCopyright 2006 Regents of University of California12EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Impedance from Poynting’s Theorem•Siis surface for signal feed and S is the outside surface• Take Real and Imy parts for R and X()ndaSxdwwixEdJiXRjXRiXRZIVndaSVIiiSSVmeVS⋅+−+⋅=−+=−==⋅−=∫∫∫∫−242133**ωVΙCopyright 2006 Regents of University of California13EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Foster’s Reactance Theorem• Start with div of E cross derivative of H plus derivative of E cross H; use Div theorem• Result: The derivative of the reactance and the susceptance with respect to ω is always positive• (There may be an alternative derivation using the time derivative of the expression for the impedance)()()**44VVwwBIIwwXmeme+=∂∂+=∂∂ωωVΙCollin 4.3Copyright 2006 Regents of University of California14EE 210 Applied EM Fall 2006, Neureuther Lecture #10 Ver 09/26/06Lorentz Reciprocity Theorem• Start with Lorenz reciprocity statement• put in integral form; substitute for J• use Div theorem• argue integral at infinity is zero due to same outgoing


View Full Document

Berkeley ELENG 210 - Poynting’s Theorem, Time- Harmonic EM Fields

Download Poynting’s Theorem, Time- Harmonic EM Fields
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Poynting’s Theorem, Time- Harmonic EM Fields and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Poynting’s Theorem, Time- Harmonic EM Fields 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?