New version page

# UF PHY 4523 - The Canonical Ensemble

Pages: 13
Documents in this Course

5 pages

31 pages

11 pages

25 pages

6 pages

5 pages

22 pages

28 pages

14 pages

14 pages

22 pages

11 pages

21 pages

25 pages

49 pages

8 pages

5 pages

12 pages

11 pages

49 pages

19 pages

10 pages

13 pages

11 pages

11 pages

8 pages

9 pages

12 pages

6 pages

15 pages

14 pages

9 pages

6 pages

25 pages

## This preview shows page 1-2-3-4 out of 13 pages.

View Full Document

End of preview. Want to read all 13 pages?

View Full Document
Unformatted text preview:

Lecture 18 Lecture 18 ——The Canonical Ensemble The Canonical Ensemble Chapter 6, Chapter 6, Wednesday February 20Wednesday February 20thth•Rotational energy levels in diatomic molecules•Vibrational energy levels in diatomic molecules•More on the equipartition theoremReading: Reading: All of chapter 5 (pages 91 All of chapter 5 (pages 91 --123)123)Homework 5 due next Friday (22nd)Homework 5 due next Friday (22nd)Homework assignments available on web pageHomework assignments available on web pageAssigned problems, Assigned problems, Ch. 5Ch. 5: 8, 14, 16, 18, 22: 8, 14, 16, 18, 22Rotational energy levels for diatomic moleculesRotational energy levels for diatomic molecules()21221llllIglε=+=+=I = momentof inertial = 0, 1, 2... is angular momentum quantum numberCO2I2HI HCl H2θR(K) 0.56 0.053 9.4 15.3 88Vibrational energy levels for diatomic moleculesVibrational energy levels for diatomic molecules()12nnεω=+=ω= naturalfrequency ofvibrationn = 0, 1, 2... (harmonic quantum number)I2F2HCl H2θV(K) 309 1280 4300 6330ωSpecific heat at constant pressure for HSpecific heat at constant pressure for H22CP(J.mol−1.K−1)ω52R72R92RHH22boilsboilsTranslationTranslationCCPP= = CCVV+ + nRnRMore on the equipartition theoremMore on the equipartition theoremClassical uncertainty:V(x)V = ∞ V = 0V = ∞xx = LWhere is the particle?Where is the particle?WW= 9= 9More on the equipartition theoremMore on the equipartition theoremClassical uncertainty:V(x)V = ∞ V = 0V = ∞xx = LWhere is the particle?Where is the particle?WW= 18= 18More on the equipartition theoremMore on the equipartition theoremClassical uncertainty:V(x)V = ∞ V = 0V = ∞xx = LWhere is the particle?Where is the particle?WW= 36= 36More on the equipartition theoremMore on the equipartition theoremClassical uncertainty:V(x)V = ∞ V = 0V = ∞xx = LWhere is the particle?Where is the particle?WW= = ∞∞SS= = ∞∞More on the equipartition theorem: phase spaceMore on the equipartition theorem: phase spacexpxdxdpxArea hCell:(x,px)More on the equipartition theorem: phase spaceMore on the equipartition theorem: phase spacexpxdxdpxArea hCell:(x,px)More on the equipartition theorem: phase spaceMore on the equipartition theorem: phase spacexpxdxdpxArea hCell:(x,px),xxxpdxdpdWh=More on the equipartition theorem: phase spaceMore on the equipartition theorem: phase space33,33xyzrpdxdydzdp dp dpdrdpdWhh==GGIn 3D:dxdpxdxdpx= hUncertainty relation:Examples of degrees of freedom:Examples of degrees of freedom:()()221122221122222322211,22112211221212average, or r.m.s. valueLC B BHO B Btrans x y z Brot dia x y B BECV Li kT kTEk x mv kT kTE mvvv kTEIkTkTωω=+=+=+

View Full Document
Unlocking...