DOC PREVIEW
Princeton COS 461 - IP Packet Switching

This preview shows page 1-2-16-17-18-34-35 out of 35 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 35 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

COS$461:$Computer$Networks$Spring$2008$(MW$1:30‐2:50$in$COS$105)$Mike$Freedman$hEp://www.cs.princeton.edu/courses/archive/spring09/cos461/$IP$Packet$Switching$Goals$of$Today’s$Lecture$• ConnecTvity$– Links$and$nodes$– Circuit$switching$– Packet$switching$• IP$ser vice$model$– Best‐effort$packet$delivery$– IP$as$the$Internet’s$“narrow$waist”$– Design$philosophy$of$IP$• IP$packet$structure$– Fields$in$the$IP$header$– Traceroute$using$TTL$field$– Source‐address$spoofing$2Simple$Network:$Nodes$and$a$Link$• Node:$computer$– End$host:$general‐purpose$computer,$cell$phone,$PDA$– Network$node:$switch$or$router$• Link:$physical$medium$connecTng$nodes$– Twisted$pair:$the$wire$that$connects$to$telephones$– Coaxial$cable:$the$wire$that$connects$to$TV$sets$– OpTcal$fiber:$high‐bandwidth$long‐distance$links$– Space:$propagaTon$of$radio$waves,$microwaves,$…$3 Node Link NodeNetwork$Components$4 Fibers Coaxial Cable Links Interfaces Switches/routers Ethernet card Wireless card Large router Telephone switchLinks:$Delay$and$Bandwidth$• Delay$– Latency$for$propagaTng$data$along$the$link$– Corresponds$to$the$“length”$of$the$link$– Typically$measured$in$seconds$• Bandwidth$– Amount$of$data$sent$(or$received)$per$unit$Tme$– Corresponds$to$the$“width”$of$the$link$– Typically$measured$in$bits$per$second$5 bandwidth delay delay x bandwidthConnecTng$More$Than$Two$Hosts$• MulT‐access$link:$Ethernet,$wireless$$– Single$physical$link,$shared$by$mulTple$nodes$– LimitaTons$on$distance$and$number$of$nodes$• Point‐to‐point$links:$fiber‐opTc$cable$– Only$two$nodes$(separate$link$per$pair$of$nodes)$– LimitaTons$on$the$number$of$adapters$per$node$6 multi-access link point-to-point linksBeyond$Directly‐Connected$Networks$• Switched$network$– End$hosts$at$the$edge$– Network$nodes$that$switch$traffic$– Links$between$the$nodes$• MulTplexing$– Many$end$hosts$communicate$over$the$network$– Traffic$shares$access$to$the$same$links$7Circuit$Switching$(e.g.,$Phone$Network)$• Source$establishes$connecTon$to$desTnaTon$– Node$along$the$path$store$connecTon$info$– Nodes$may$reserve$resources$for$the$connecTon$• Source$sends$data$over$the$connecTon$– No$desTnaTon$address,$since$nodes$know$path$• Source$tears$down$connecTon$when$done$8Circuit$Switching$With$Human$Operator$9Circuit$Switching:$MulTplexing$a$Link$• Time‐division$– Each$circuit$allocated$certain$Tme$slots$• Frequency‐division$– Each$circuit$allocated$certain$frequencies$10 time frequency timeAdvantages$of$Circuit$Switching$• Guaranteed$bandwidth$$– Predictable$communicaTon$performance$– Not$“best‐effort”$delivery$with$no$real$guarantees$• Simple$abstracTon$– Reliable$communicaTon$channel$between$hosts$– No$worries$about$lost$or$out‐of‐order$packets$• Simple$forwarding$$– Forwarding$based$on$Tme$slot$or$frequency$– No$need$to$inspect$a$packet$header$• Low$per‐packet$overhead$– Forwarding$based$on$Tme$slot$or$frequency$– No$IP$(and$TCP/UDP)$header$on$each$packet$11Disadvantages$of$Circuit$Switching$• Wasted$bandwidth$– Bursty$traffic$leads$to$idle$conn$during$silent$period$– Unable$to$achieve$gains$from$staTsTcal$mulTplexing$• Blocked$connecTons$– ConnecTon$refused$when$resources$are$not$sufficient$– Unable$to$offer$“okay”$service$to$everybody$• ConnecTon$set‐up$delay$$– No$communicaTon$unTl$the$connecTon$is$set$up$– Unable$to$avoid$extra$latency$for$small$data$transfers$• Network$state$– Network$nodes$must$store$per‐connecTon$informaTon$– Unable$to$avoid$per‐connecTon$storage$and$state$12Packet$Switching$(e.g.,$Internet)$• Data$traffic$divided$into$packets$– Each$packet$contains$a$header$(with$address)$• Packets$travel$separately$through$network$– Packet$forwarding$based$on$the$header$– Network$nodes$may$store$packets$temporarily$• DesTnaTon$reconstructs$the$message$13Packet$Switching:$StaTsTcal$MulTplexing$14 PacketsIP$Service:$Best‐Effort$Packet$Delivery$15 • Packet$switching$– Divide$messages$into$a$sequence$of$packets$– Headers$with$source$and$desTnaTon$address$• Best‐effort$delivery$– Packets$may$be$lost$– Packets$may$be$corrupted$– Packets$may$be$delivered$out$of$order$source destination IP networkIP$Service$Model:$Why$Packets?$• Data$traffic$is$bursty$– Logging$in$to$remote$machines$– Exchanging$e‐mail$messages$• Don’t$want$to$waste$bandwidth$– No$traffic$exchanged$during$idle$periods$• BeEer$to$allow$mulTplexing$– Different$transfers$share$access$to$same$links$• Packets$can$be$delivered$by$most$anything$– RFC$1149:$IP$Datagrams$over$Avian$Carriers$$• …$sTll,$packet$switching$can$be$inefficient$– Extra$header$bits$on$every$packet$16IP$Service$Model:$Why$Best‐Effort?$• IP$means$never$having$to$say$you’re$sorry…$– Don’t$need$to$reser ve$bandwidth$and$memory$– Don’t$need$to$do$error$detecTon$&$correcTon$– Don’t$need$to$remember$from$one$packet$to$next$• Easier$to$survive$failures$– Transient$disrupTons$are$okay$during$failover$• …$but,$applicaTons$do#want$efficient,$accurate$transfer$of$data$in$order,$in$a$Tmely$fashion$17IP$Service:$Best‐Effort$is$Enough$• No$error$detecTon$or$correcTon$– Higher‐level$protocol$can$provide$error$checking$• Successive$packets$may$not$follow$the$same$path$– Not$a$problem$as$long$as$packets$reach$the$desTnaTon$• Packets$can$be$delivered$out‐of‐order$– Receiver$can$put$packets$back$in$order$(if$necessary)$• Packets$may$be$lost$or$arbitrarily$delayed$– Sender$can$send$the$packets$again$(if$desired)$• No$network$congesTon$control$(beyond$“drop”)$– Sender$can$slow$down$in$response$to$loss$or$delay$18Layering$in$the$IP$Protocols$19 Internet Protocol Transmission Control Protocol (TCP) User Datagram Protocol (UDP) Telnet HTTP SONET ATM Ethernet RTP DNS FTPHistory:$Why$IP$Packets?$• IP$proposed$in$the$early$1970s$– Defense$Advanced$Research$Project$Agency$(DARPA)$• Goal:$connect$exisTng$networks$–


View Full Document

Princeton COS 461 - IP Packet Switching

Documents in this Course
Links

Links

39 pages

Lecture

Lecture

76 pages

Switches

Switches

35 pages

Lecture

Lecture

42 pages

Links

Links

39 pages

Lecture

Lecture

34 pages

Topology

Topology

42 pages

Lecture

Lecture

42 pages

Overview

Overview

42 pages

Sockets

Sockets

45 pages

Load more
Download IP Packet Switching
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view IP Packet Switching and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view IP Packet Switching 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?