New version page

Princeton COS 461 - IP Packet Switching

Documents in this Course
Links

Links

39 pages

Lecture

Lecture

76 pages

Switches

Switches

35 pages

Lecture

Lecture

42 pages

Links

Links

39 pages

Lecture

Lecture

34 pages

Topology

Topology

42 pages

Lecture

Lecture

42 pages

Overview

Overview

42 pages

Sockets

Sockets

45 pages

Load more

This preview shows page 1-2-16-17-18-34-35 out of 35 pages.

View Full Document
View Full Document

End of preview. Want to read all 35 pages?

Upload your study docs or become a GradeBuddy member to access this document.

View Full Document
Unformatted text preview:

COS$461:$Computer$Networks$Spring$2008$(MW$1:30‐2:50$in$COS$105)$Mike$Freedman$hEp://www.cs.princeton.edu/courses/archive/spring09/cos461/$IP$Packet$Switching$Goals$of$Today’s$Lecture$• ConnecTvity$– Links$and$nodes$– Circuit$switching$– Packet$switching$• IP$ser vice$model$– Best‐effort$packet$delivery$– IP$as$the$Internet’s$“narrow$waist”$– Design$philosophy$of$IP$• IP$packet$structure$– Fields$in$the$IP$header$– Traceroute$using$TTL$field$– Source‐address$spoofing$2Simple$Network:$Nodes$and$a$Link$• Node:$computer$– End$host:$general‐purpose$computer,$cell$phone,$PDA$– Network$node:$switch$or$router$• Link:$physical$medium$connecTng$nodes$– Twisted$pair:$the$wire$that$connects$to$telephones$– Coaxial$cable:$the$wire$that$connects$to$TV$sets$– OpTcal$fiber:$high‐bandwidth$long‐distance$links$– Space:$propagaTon$of$radio$waves,$microwaves,$…$3 Node Link NodeNetwork$Components$4 Fibers Coaxial Cable Links Interfaces Switches/routers Ethernet card Wireless card Large router Telephone switchLinks:$Delay$and$Bandwidth$• Delay$– Latency$for$propagaTng$data$along$the$link$– Corresponds$to$the$“length”$of$the$link$– Typically$measured$in$seconds$• Bandwidth$– Amount$of$data$sent$(or$received)$per$unit$Tme$– Corresponds$to$the$“width”$of$the$link$– Typically$measured$in$bits$per$second$5 bandwidth delay delay x bandwidthConnecTng$More$Than$Two$Hosts$• MulT‐access$link:$Ethernet,$wireless$$– Single$physical$link,$shared$by$mulTple$nodes$– LimitaTons$on$distance$and$number$of$nodes$• Point‐to‐point$links:$fiber‐opTc$cable$– Only$two$nodes$(separate$link$per$pair$of$nodes)$– LimitaTons$on$the$number$of$adapters$per$node$6 multi-access link point-to-point linksBeyond$Directly‐Connected$Networks$• Switched$network$– End$hosts$at$the$edge$– Network$nodes$that$switch$traffic$– Links$between$the$nodes$• MulTplexing$– Many$end$hosts$communicate$over$the$network$– Traffic$shares$access$to$the$same$links$7Circuit$Switching$(e.g.,$Phone$Network)$• Source$establishes$connecTon$to$desTnaTon$– Node$along$the$path$store$connecTon$info$– Nodes$may$reserve$resources$for$the$connecTon$• Source$sends$data$over$the$connecTon$– No$desTnaTon$address,$since$nodes$know$path$• Source$tears$down$connecTon$when$done$8Circuit$Switching$With$Human$Operator$9Circuit$Switching:$MulTplexing$a$Link$• Time‐division$– Each$circuit$allocated$certain$Tme$slots$• Frequency‐division$– Each$circuit$allocated$certain$frequencies$10 time frequency timeAdvantages$of$Circuit$Switching$• Guaranteed$bandwidth$$– Predictable$communicaTon$performance$– Not$“best‐effort”$delivery$with$no$real$guarantees$• Simple$abstracTon$– Reliable$communicaTon$channel$between$hosts$– No$worries$about$lost$or$out‐of‐order$packets$• Simple$forwarding$$– Forwarding$based$on$Tme$slot$or$frequency$– No$need$to$inspect$a$packet$header$• Low$per‐packet$overhead$– Forwarding$based$on$Tme$slot$or$frequency$– No$IP$(and$TCP/UDP)$header$on$each$packet$11Disadvantages$of$Circuit$Switching$• Wasted$bandwidth$– Bursty$traffic$leads$to$idle$conn$during$silent$period$– Unable$to$achieve$gains$from$staTsTcal$mulTplexing$• Blocked$connecTons$– ConnecTon$refused$when$resources$are$not$sufficient$– Unable$to$offer$“okay”$service$to$everybody$• ConnecTon$set‐up$delay$$– No$communicaTon$unTl$the$connecTon$is$set$up$– Unable$to$avoid$extra$latency$for$small$data$transfers$• Network$state$– Network$nodes$must$store$per‐connecTon$informaTon$– Unable$to$avoid$per‐connecTon$storage$and$state$12Packet$Switching$(e.g.,$Internet)$• Data$traffic$divided$into$packets$– Each$packet$contains$a$header$(with$address)$• Packets$travel$separately$through$network$– Packet$forwarding$based$on$the$header$– Network$nodes$may$store$packets$temporarily$• DesTnaTon$reconstructs$the$message$13Packet$Switching:$StaTsTcal$MulTplexing$14 PacketsIP$Service:$Best‐Effort$Packet$Delivery$15 • Packet$switching$– Divide$messages$into$a$sequence$of$packets$– Headers$with$source$and$desTnaTon$address$• Best‐effort$delivery$– Packets$may$be$lost$– Packets$may$be$corrupted$– Packets$may$be$delivered$out$of$order$source destination IP networkIP$Service$Model:$Why$Packets?$• Data$traffic$is$bursty$– Logging$in$to$remote$machines$– Exchanging$e‐mail$messages$• Don’t$want$to$waste$bandwidth$– No$traffic$exchanged$during$idle$periods$• BeEer$to$allow$mulTplexing$– Different$transfers$share$access$to$same$links$• Packets$can$be$delivered$by$most$anything$– RFC$1149:$IP$Datagrams$over$Avian$Carriers$$• …$sTll,$packet$switching$can$be$inefficient$– Extra$header$bits$on$every$packet$16IP$Service$Model:$Why$Best‐Effort?$• IP$means$never$having$to$say$you’re$sorry…$– Don’t$need$to$reser ve$bandwidth$and$memory$– Don’t$need$to$do$error$detecTon$&$correcTon$– Don’t$need$to$remember$from$one$packet$to$next$• Easier$to$survive$failures$– Transient$disrupTons$are$okay$during$failover$• …$but,$applicaTons$do#want$efficient,$accurate$transfer$of$data$in$order,$in$a$Tmely$fashion$17IP$Service:$Best‐Effort$is$Enough$• No$error$detecTon$or$correcTon$– Higher‐level$protocol$can$provide$error$checking$• Successive$packets$may$not$follow$the$same$path$– Not$a$problem$as$long$as$packets$reach$the$desTnaTon$• Packets$can$be$delivered$out‐of‐order$– Receiver$can$put$packets$back$in$order$(if$necessary)$• Packets$may$be$lost$or$arbitrarily$delayed$– Sender$can$send$the$packets$again$(if$desired)$• No$network$congesTon$control$(beyond$“drop”)$– Sender$can$slow$down$in$response$to$loss$or$delay$18Layering$in$the$IP$Protocols$19 Internet Protocol Transmission Control Protocol (TCP) User Datagram Protocol (UDP) Telnet HTTP SONET ATM Ethernet RTP DNS FTPHistory:$Why$IP$Packets?$• IP$proposed$in$the$early$1970s$– Defense$Advanced$Research$Project$Agency$(DARPA)$• Goal:$connect$exisTng$networks$–


View Full Document
Loading Unlocking...
Login

Join to view IP Packet Switching and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view IP Packet Switching and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?