DOC PREVIEW
UNCC ECGR 6185 - Fixed-Point Math and Other Optimizations

This preview shows page 1-2-21-22 out of 22 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

8-1Embedded SystemsFixed-Point Math and Other OptimizationsEmbedded Systems 8-2Fixed Point Math – Why and HowFloating point is too slow and integers truncate the data– Floating point subroutines: slower than native, overhead of passing arguments, calling subroutines… simple fixed point routines can be in-linedBasic Idea: put the radixpoint where covers therange of numbers youneed to representI.F Terminology– I = number of integer bits– F= number of fraction bitsBit Pattern0000 00000001 11000110 0011Integer0/1 = 028/1 = 2899/1 = 996.20/4 = 028/4 = 799/4 = 24.751.100/1024 = 028/1024 = 0.0273…99/1024 = 0.0966…000000000Radix Point Locations1/321/161/8¼½12Weight2-52-42-32-22-12021Weight1101011BitRadix Point3.34375 in a fixed point binary representationEmbedded Systems 8-3Rules for Fixed Point MathAddition, Subtraction– Radix point stays where it started– …so we can treat fixed point numbers like integersMultiplication – Radix point moves left by F digits– … so we need to normalize result afterwards, shifting the result right by F digits+*10* 1.2512.56.2 Format 001010.00*000001.0100000000 1100.1000Embedded Systems 8-4DivisionDivision – Quotient is integer, may want to convert back to fixed point by shifting– Radix point doesn’t move in remainderQuotientRemainder÷7÷ 2313.1 Format 111.0÷ 010.00011001.03.2 Format 111.00÷ 010.0000011001.00DividendDivisorEmbedded Systems 8-5Division, Part IIDivision – To make quotient have same format as dividend and divisor, multiply dividend by 2F(shift left by F bits) – Quotient is in fixed point format nowQuotient÷7÷ 233.1 Format (7*2)1110.0÷ 010.00011.13.2 Format (7*4)11100.00÷ 010.0000011.10DividendDivisorEmbedded Systems 8-6Example Code for 12.4 Fixed Point MathRepresentation       Converting to and from fixed point representation   ! ! ! !"""""""" #$%#$%#$%#$%  ! ! ! !&&&&&&&&Math '(()*'(()*'(()*'(()*+*+*+*+* ,-.)*,-.)*,-.)*,-.)*////**** 0-)*0-)*0-)*0-)**&&*&&*&&*&& ( 1)*( 1)*( 1)*( 1)*%*""%*""%*""%*"" 230)*230)*230)*230)*4*4*4*4*Embedded Systems 8-7More Fixed Point Math Examples*9.0625* 6.558.906254.4 Format 1001.0001*0110.10000011 1010.1110 1000*10+ 1.511.58.4 Format 0000 1010.0000+0000 0001.100000000000 1100.1000Embedded Systems 8-8Static RevisitedStatic variable– A local variable which retains its value between function invocations– Visible only within its module, so compiler/linker can allocate space more wisely (recall limited pointer offsets)Static function– Visible only within its module, so compiler knows who is calling the functions, – Compiler/linker can locate function to optimize calls (short call)– Compiler can also inline the function to reduce run-time and often code sizeEmbedded Systems 8-9Volatile and ConstVolatile variable– Value can be changed outside normal program flow• ISR, variable is actually a hardware register– Compiler reloads the variable from memory each time it is usedConst variable– const does not mean constant, but rather read-only– consts are implemented as real variables (taking space in RAM) or in ROM, requiring loading operations (often requiring pointer manipulation)• A #define value can be converted into an immediate operand, which is much faster• So avoid themConst function parameters– Allow compiler to optimize, as it knows a variable


View Full Document

UNCC ECGR 6185 - Fixed-Point Math and Other Optimizations

Documents in this Course
Zigbee

Zigbee

33 pages

Load more
Download Fixed-Point Math and Other Optimizations
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Fixed-Point Math and Other Optimizations and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Fixed-Point Math and Other Optimizations 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?