Unformatted text preview:

01/27/2003 2D Fourier Transform 12D Fourier TransformWeek IV2-D DFT & Properties01/27/20032D Fourier Transform 2Fourier Transform - review1-D:2-D:Fu fx fxe dxf x Fu Fue duFuv f xye dxdyfxy Fuve dudvjuxjuxjuxvyjuxvyaf k pkpafaf≡ℑ =≡ℑ ===−−∞∞−−∞∞−++zzzzzz() ()() () ()(,) (, )(,) (,)21222ππππ01/27/20032D Fourier Transform 32D FT: PropertiesConvolution: f(x,y) g(x,y) = F(u,v) G(u,v)Multiplication: f(x,y) g(x,y) = F(u,v) G(u,v)Separable functions: Suppose f(x,y) = g(x) h(y), ThenF(u,v)=G(u)H(v)Shifting: f(x+x0, y+y0) exp[2π (x0u + y0v)] F(u,v)Linearity: a f(x,y) + b g(x,y) a F(u,v) + b G(u,v)01/27/20032D Fourier Transform 4Separability of the FTFuv f xye dx e dyFuy e dyjux jvyjvy(,) (, )(, )=LNMOQP=−−∞∞−∞∞−−∞∞−zzz222πππ01/27/20032D Fourier Transform 5Separability (contd.)f(x,y) F(u,y) F(u,v)Fourier Transform along X.Fourier Transformalong Y.We can implement the 2D Fourier transform as a sequence of 1-D Fourier transform operations.01/27/20032D Fourier Transform 6Eigenfunctions of LSI SystemsA function f(x,y) is an Eigenfunction of a system T ifT[ f(x,y) ] = α f(x,y) for some constant (Possibly complex) α.For LSI systems, complex exponentials of the form exp{ j2ππππ (ux+vy) }, for any (u,v), are the Eigenfunctions.01/27/20032D Fourier Transform 7Impulse Response and Eigenfunctionsgxy hx sy te dsdthxye e dxdyHuvejusvtjuxvy juxvyjuxvy(,) ( , )(,)(,)()() ()()=--==+-••+- ++zzzz2222ππππConsider a LSI system with impulse response h(x,y).Its output to the complex exponential is01/27/20032D Fourier Transform 82-D FT: Examplef(x,y)xyYXAFuv f xye dxdyAe dx e dyAXYuXuXvYvYejuxvyjuxXjvyYjuXvY(,) (, )sin sin()()===LNMOQPLNMOQP-+-••---+zzzz22020ππππππππ01/27/20032D Fourier Transform 9Example (contd.)01/27/20032D Fourier Transform 10Example201/27/20032D Fourier Transform 11Discrete Fourier TransformConsider a sequence {u(n), n=0,1,2,....., N-1}. The DFT of u(n) isvk unW k NWeunNvkW n NnNNknNjNkNNkn( ) ( ) , , ,.....,,( ) ( ) , , ,...,==−===−=−−=−−∑∑0120101 1101 1Where and the inverse is given byπ01/27/20032D Fourier Transform 122-D DFTOften it is convenient to consider a symmetric transform:In 2-D: consider a NXN imagevkNunWunNvkWNknnNNknnN() ()() ()===--=-ÂÂ110101andvklNumn W WumnNvkl WnNNkmNlnmNlNNkm lnkN(,) ( , ) ,(,) (,)===-=-=---=-ÂÂÂÂ110101010101/27/20032D Fourier Transform 132D DFT -- PROPERTIES■ Separability■ Translation■ Scaling■ Periodicity and Conjugate Symmetry■ Rotation■ convolution01/27/20032D Fourier Transform 14SeparabilityFor each ‘m’, v(m,l) is the 1-D DFT with frequency values l = 0,1,....., N-1vklNWumnWNvml WNkmmNNlnnNNkmmN(,) ( , )(,)===-=-=-ÂÂÂ1101010101/27/20032D Fourier Transform 15SeparabilityThe DFT of a 2-D array can be obtained by first taking the 1-D DFT of each row (or column) and then taking the 1-D DFT of each column (or row).It does not matter if the order of operation is reversed.01/27/20032D Fourier Transform 16Translationum m n n vklejkmlnN(,)(,)(' ')-¢-¢´-+2π01/27/20032D Fourier Transform 17Displaying the DFT: Scalingv(k,l)=DFT{u(m,n)}DisplayC log[1+lv(k,l)l]ConstantLarge dynamic range01/27/20032D Fourier Transform 18In MATLABf = zeros(30,30);f(5:24,13:17)=1;imshow(f, ‘notruesize’);01/27/20032D Fourier Transform 19In Matlab(2)F =fft2(f);F2 = log(abs(F));imshow(F2, [-1, 5], ‘notruesize’);colormap(jet); colorbar;01/27/20032D Fourier Transform 20Displaying the DFTN-1v0N-1uLow frequency components01/27/20032D Fourier Transform 21Displaying (again) & Shiftingumne vk k l lumn v kNlNjkmlnNmn(,) ( ', ')(,)( ) ,(' ')2122π++´---´ --FHIKandThe origin of the F{u(m,n)} can be moved to the center of the array (N X N square) by first multiplying u(m,n) by (-1)m+n and then taking the Fourier transform.Note: Shifting does not affect the magnitude of the Fourier transform.01/27/20032D Fourier Transform 22Displaying DFT|v(k,l) e -j2π[ km’+ln’ ] / N | = |v(k,l)|ABCDDCBALow frequencycomponentsMATLAB Example01/27/20032D Fourier Transform 23In Matlab(3): FFTSHIFTF2= fftshift(F);imshow (log(abs(F2),..)01/27/20032D Fourier Transform 24Another exampleOriginal image Its centered DFT magnitude01/27/20032D Fourier Transform 25Periodicity & Conjugate Symmetryu(m,n) Fv(k,l)v(k,l) = v(k+N, l) = v(k, l+N) = v(k+N, l+N)If u(m,n) is real, v(k,l) also exhibits conjugate symmetryv(k,l) = v* (-k, -l) or | v(k,l) | = | v(-k, -l) |01/27/20032D Fourier Transform 26Rotation(continuous case)If you rotate the image u(m,n) by an angle θ, its F.T alsogets rotated by the same angle.01/27/20032D Fourier Transform 27Rotation01/27/20032D Fourier Transform 28Average ValueuNumnvklNumnevNumn NuuvNnmjkm l nNnmnm======ÂÂÂÂÂÂ-+11001002(,)(,) ( , )(,) ( , )(,)Average or (Scaled Average)π01/27/20032D Fourier Transform 29Convolution (Revisited)Consider 1-D continuous caseConvolution inSpaceMultiplication inFrequencyfx gx fx gx x dxfx Fu gx Gufx gx FuGu() () (')( ') '() (), () ()() () () ()*= -´´*´-••zLet Then 01/27/20032D Fourier Transform 30Let us now assume that we discretize f(x) and g(x) into vectors f(n) and g(n) of lengths A and Bf(n) {f(0), f(1),..... f(A-1)}g(n) {g(0), g(1), g(2),....g(B-1)}(a) DFT and its inverse are periodic functions(b) Convolving two vectors of length A and B gives a vector of dimension A+B-1. (Linear convolution)Discrete Convolution01/27/20032D Fourier Transform 31Length of the ConvolutionBA01/27/20032D Fourier Transform 32Discrete Convolution: an example (Fig 4.36)3200 400f(m)m3200 400f(m)m2200 400h(m)m2200 400h(m)m2200 400h(-m)m2200 400h(-m)m01/27/20032D Fourier Transform 33Discrete conv. (cont.)2200 400h(x-m)mx2200 400h(x-m)mxRange of the DFT=40050001/27/20032D Fourier Transform 34Zero ImbeddingIn order to obtain a convolution theorem for the discrete case, and still be consistent with the periodicity property we need to assume that sequences f( ) and g( ) are periodic with some period M. From (b) it is clear that M> A+B-1 to avoid overlap. Since this period is greater than A or B, the original sequence length must be increased and this is done by appending zeros at the end. Redefine the extended sequences asfnfn n AAnMgngn n BBnMee()()()()=≤≤−≤≤ −RST=≤≤−≤≤ −RST0101010101/27/20032D Fourier Transform 35fn gn fmgn mgn gn Mnn nN n NnNnxyxyxyyxxece e e cmMcxyxy() () ( ) ( )().*= -=+££-=- π==-Â0112 11010where Modulo Note: With n expressed as=


View Full Document

UCSB ECE 178 - Fourier Transform

Download Fourier Transform
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Fourier Transform and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Fourier Transform 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?