DOC PREVIEW
MIT 18 01 - Numerical Integration

This preview shows page 1-2 out of 6 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.Lecture 24 18.01 Fall 2006 Lecture 24: Numerical Integration Numerical Integration We use numerical integration to find the definite integrals of expressions that look like: � b (a big mess) a We also resort to numerical integration when an integral has no elementary antiderivative. For instance, there is no formula for � x � 3 cos(t2)dt or e−x 2 dx 0 0 Numerical integration yields numbers rather than analytical expressions. We’ll talk about three techniques for numerical integration: Riemann sums, the trapezoidal rule, and Simpson’s rule. 1. Riemann Sum a bFigure 1: Riemann sum with left endpoints: (y0 + y1 + . . . + yn−1)Δx Here, xi − xi−1 = Δx (or, xi = xi−1 + Δx) a = x0 < x1 < x2 < . . . < xn = b y0 = f(x0), y1 = f(x1), . . . yn = f(xn) 1� � � � � � � � � � Lecture 24 18.01 Fall 2006 2. Trapezoidal Rule The trapezoidal rule divides up the area under the function into trapezoids, rather than rectangles. The area of a trapezoid is the height times the average of the parallel bases: base 1 + base 2 y3 + y4Area = height = Δx (See Figure 2) 2 2 y3y4∆xFigure 2: Area = y3 + y4 Δx 2 a bFigure 3: Trapezoidal rule = sum of areas of trapezoids. Total Trapezoidal Area = Δxy0 + y1 + y1 + y2 + y2 + y3 + ... + yn−1 + yn 2 2 2 2 = Δxy2 0 + y1 + y2 + ... + yn−1 + y2 n 2� � � � Lecture 24 18.01 Fall 2006 Note: The trapezoidal rule gives a more symmetric treatment of the two ends (a and b) than a Riemann sum does — the average of left and right Riemann sums. 3. Simpson’s Rule This approach often yields much more accurate results than the trapezoidal rule does. Here, we match quadratics (i.e. parabolas), instead of straight or slanted lines, to the graph. This approach requires an even number of intervals. x₀ x₁ x₂y0y1y2∆x ∆xFigure 4: Area under a parabola. y0 + 4y1 + y2Area under parabola = (base)(weighted average height) = (2Δx) 6 Simpson’s rule for n intervals (n must be even!) 1Area = (2Δx) 6 [(y0 + 4y1 + y2) + (y2 + 4y3 + y4) + (y4 + 4y5 + y6) + · · · + (yn−2 + 4yn−1 + yn)] Notice the following pattern in the coefficients: 1 4 1 1 4 1 1 4 1 1 4 2 4 2 4 1 3Lecture 24 18.01 Fall 2006 0 1 2 3 41st chunk2nd chunkFigure 5: Area given by Simpson’s rule for four intervals Simpson’s rule: � b Δx f(x) dx ≈ 3(y0 + 4y1 + 2y2 + 4y3 + 2y4 + . . . + 4yn−3 + 2yn−2 + 4yn−1 + yn) a The pattern of coefficients in parentheses is: 1 4 1 = sum 6 1 4 2 4 1 = sum 12 1 4 2 4 2 4 1 = sum 18 To double check – plug in f(x) = 1 (n even!). Δx Δx � � n � � n �� 3 (1 + 4 + 2 + 4 + 2 + · · · + 2 + 4 + 1) = 3 1 + 1 + 4 2 + 2 2 − 1 = nΔx (n even) 4� � � Lecture 24 18.01 Fall 2006 � 1 1 Example 1. Evaluate dx using two methods (trapezoidal and Simpson’s) of numerical 1 + x2 0 integration. 01∆x∆xFigure 6: Area under (1+1 x2) above [0, 1]. Δx y0 + y1 By Simpson’s rule: 2 2 2 2 5 2 2 2 2 5 4 � � ��Δx 1/2 4 1 (y0 + 4y1 + y2) = 1 + 4 + = 0.78333...3 Exact answer: 3 5 2 1 � 1 1 �� π π dx = tan−1 x� = tan−1 1 − tan−1 0 = 4 − 0 = 4 ≈ 0.7851 + x20 Roughly speaking, the error, | Simpson’s − Exact |, has order of magnitude (Δx)4 . 0 x 0 1 1 4 5 2 1 By the trapezoidal rule: 1/(1 + x2) 1 2 � �� � � + y2 = (1) + + = + + = 0.7751 1 1 1 4 1 1 1 1 4 1


View Full Document

MIT 18 01 - Numerical Integration

Documents in this Course
Graphing

Graphing

46 pages

Exam 2

Exam 2

3 pages

Load more
Download Numerical Integration
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Numerical Integration and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Numerical Integration 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?