DOC PREVIEW
MIT 3 320 - THE MANY-BODY PROBLEM

This preview shows page 1-2-3-18-19-37-38-39 out of 39 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 39 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 39 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 39 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 39 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 39 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 39 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 39 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 39 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 39 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

3.320: Lecture 5 (Feb 15 2005) THE MANY-BODY PROBLEMWhen is a particle like a wave ?Time-dependent Schrödinger’s equation(Newton’s 2nd law for quantum objects)Stationary Schrödinger’s Equation (I)Stationary Schrödinger’s Equation (II)Free particle Ψ(x,t)=φ(x)f(t)Interpretation of the Quantum Wavefunction (Copenhagen)A Traveling “Plane” WaveMetal Surfaces (I)Metal Surfaces (II)Infinite Square WellFinite Square WellA Central Potential (e.g. the Nucleus)Solutions in a Coulomb Potential: the Periodic TableOrthogonality, Expectation Values, and Dirac’s <bra|kets>Matrix Formulation (I)Matrix Formulation (II)Variational PrincipleEnergy of an Hydrogen AtomTwo-electron atomEnergy of a collection of atomsElectrons and NucleiComplexity of the many-body ΨMean-field approachHartree EquationsThe self-consistent fieldIterations to self-consistencyDifferential AnalyzerWhat’s missingSpin-StatisticsSlater determinantPauli principleHartree-Fock EquationsShell structure of atomsFaster, or betterRestricted vs. UnrestrictedKoopmans’ TheoremsAtomic Units and Conversion Factors(see Stellar handout)Software3.320: Lecture 5 (Feb 15 2005) THE MANYTHE MANY--BODY PROBLEMBODY PROBLEMFeb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariWhen is a particle like a wave ?Wavelength • momentum = Planck↕λ •p = h( h = 6.6 x 10-34J s )),( trrΨ=ΨFeb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariTime-dependent Schrödinger’s equation(Newton’s 2ndlaw for quantum objects)ttritrtrVtrm∂Ψ∂=Ψ+Ψ∇−),(),(),(),(222rhrrrh1925-onwards: E. Schrödinger (wave equation), W. Heisenberg (matrix formulation), P.A.M. Dirac (relativistic)Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariStationary Schrödinger’s Equation (I)ttritrtrVtrm∂Ψ∂=Ψ+Ψ∇−),(),(),(),(222rhrrrh*Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariStationary Schrödinger’s Equation (II))()( tfEtfdtdi =h)()()(222rErrVmrrrhϕϕ=⎥⎦⎤⎢⎣⎡+∇−Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari)()( tfEtfdtdi =h⎟⎠⎞⎜⎝⎛−= tEitfhexp)(Free particle Ψ(x,t)=φ(x)f(t))()(222xExmϕϕ=∇−h⎟⎟⎠⎞⎜⎜⎝⎛= xmEixh2exp)(ϕFeb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariInterpretation of the Quantum Wavefunction (Copenhagen)2(,)xtΨis the probability of finding an electron in x and t22( ) exp( ) ( )ixEtxϕϕ−=hFeb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariA Traveling “Plane” Wave(,) exp[( )]xt ikx tωΨ∝ −Diagram of plane wave removed for copyright reasons.Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariMetal Surfaces (I)Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariMetal Surfaces (II)Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariInfinite Square WellFeb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari1614121086420n=1n=2n=3n=4-a 0 a xψ1ψ2ψ3ψ4ψ(x)8ma2π2h2EFigure by MIT OCW.Finite Square WellFeb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzariaψ2(x)aψ3(x)aψ4(x)aψ1(x)1-110.5-0.5-2 -12 x/a01-110.5-2-12 x/a01-110.5-2-1201-11-2-1 2 x/a x/a0Figure by MIT OCW.A Central Potential (e.g. the Nucleus)222222222ˆ()2HVrmxyz∂∂∂=− ∇ + ∇ = + +∂∂∂h2 2222 22211 1ˆsin ( )2sinsinHrVrmr r r r rϑϑϑ ϑ ϑϕ⎡⎤∂∂ ∂ ∂ ∂⎛⎞ ⎛ ⎞=− + + +⎢⎜⎟ ⎜ ⎟ ⎥∂∂ ∂ ∂ ∂⎝⎠ ⎝ ⎠⎣⎦h),()()(ϕϑψlmElmElmYrRr=r22 2222(1)() () ()22El ElddllVr R r ER rm dr r dr rµ⎡⎤⎛⎞+−+++ =⎢⎥⎜⎟⎝⎠⎣⎦hhFeb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariSolutions in a Coulomb Potential: the Periodic Tablehttp://www.orbitals.com/orb/orbtable.htmCourtesy of David Manthey. Used with permission.Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari____________________________________________________________Orthogonality, Expectation Values, and Dirac’s <bra|kets>ψψψ== )(rrijjijirdrrδψψψψ==∫rrr)()(*iiiiiEHrdrrVmr ==⎥⎦⎤⎢⎣⎡+−∫ψψψψˆ)()(2)(2*rrrhrFeb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariMatrix Formulation (I)ψψψψEHrErH =⇔=ˆ)()(ˆrr{}functions orthogonalk ,1nknnncϕϕψ∑==ψϕψϕmmEH =ˆmnknmnEcHc =∑=ϕϕˆ,1Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariMatrix Formulation (II)mnmknnEcHc =∑=ϕϕˆ,1mknnmnEccH =∑= ,1⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛⋅⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛kkkkkkccEccHHHH........................111111Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariVariational Principle[]ˆ|||HE<ΦΦ>Φ=<ΦΦ>If , then Φ is the ground state wavefunction, and viceversa…[]0EEΦ≥[]0EEΦ=Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariEnergy of an Hydrogen AtomˆHEαααααΨΨ=ΨΨ()expCrααΨ= −22223 211,22CCCrαα α α α απππαααΨΨ= Ψ−∇Ψ= Ψ−Ψ=−Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariTwo-electron atom),(),(||12121212121212221rrErrrrrZrZelrrrrrrψψ=⎥⎦⎤⎢⎣⎡−+−−∇−∇−Many-electron atom21111( ,..., ) ( ,..., )2||inelniiijiiijZrrErrrrrψψ>⎡⎤−∇− + =⎢⎥−⎢⎥⎣⎦∑∑∑∑rr rrrrFeb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariEnergy of a collection of atomsNeNNeeNeVVVTTH−−−++++=ˆˆˆˆˆˆ•Te: quantum kinetic energy of the electrons•Ve-e: electron-electron interactions•VN-N: electrostatic nucleus-nucleus repulsion•Ve-N: electrostatic electron-nucleus attraction (electrons in the field of all the nuclei)()∑∑∑∑∑>−−−=⎥⎦⎤⎢⎣⎡−=∇−=iijjieeiiIiINeierrVrRVVT||1ˆˆ21ˆ2rrrrFeb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola MarzariElectrons and Nuclei),...,,,...,(),...,,,...,(ˆ1111 NntotNnRRrrERRrrHrrrrrrrrψψ=•We


View Full Document

MIT 3 320 - THE MANY-BODY PROBLEM

Download THE MANY-BODY PROBLEM
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view THE MANY-BODY PROBLEM and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view THE MANY-BODY PROBLEM 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?