DOC PREVIEW
UT CS 395T - Reflection Models I

This preview shows page 1-2-24-25 out of 25 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 25 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 25 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 25 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 25 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 25 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Reflection Models IReflection ModelsTypes of Reflection FunctionsMaterialsThe Reflection EquationThe BRDFThe BSSRDFGonioreflectometerProperties of BRDF’sSlide 10Energy ConservationThe ReflectanceLaw of ReflectionIdeal Reflection (Mirror)Snell’s LawLaw of RefractionOptical ManholeFresnel ReflectanceExperimentCook-Torrance Model for MetalsIdeal Diffuse Reflection“Diffuse” ReflectionPhong ModelSlide 24Properties of the Phong ModelUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellReflection Models ITodayTypes of reflection modelsThe BRDF and reflectanceThe reflection equationIdeal reflection and refractionFresnel effectIdeal diffuseNext lectureGlossy and specular reflection modelsRough surfaces and microfacetsSelf-shadowingAnisotropic reflection modelsUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellReflection Models Definition: Reflection is the process by which light incident on a surface interacts with the surface such that it leaves on the incident side without change in frequency.PropertiesSpectra and Color [Moon Spectra]PolarizationDirectional distributionTheoriesPhenomenologicalPhysicalUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellTypes of Reflection FunctionsIdeal SpecularReflection LawMirrorIdeal DiffuseLambert’s LawMatteSpecularGlossyDirectional diffuseUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellMaterialsPlastic Metal MatteFrom Apodaca and Gritz, Advanced RenderManUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellThe Reflection Equation2( , ) ( , ) ( , ) cosr r r i r i i i iHL x f x L x dω ω ω ω θ ω= →∫( , )r rL x ω( , )i iL x ωidωiθrθrφiφˆNUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellThe BRDFBidirectional Reflectance-Distribution Function( )1( )r i rr i ridLfdE srω ωω ω→⎡ ⎤→ ≡⎢ ⎥⎣ ⎦( , )r rdL x ω( , )i iL x ωidωiθrθrφiφˆNUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellThe BSSRDFBidirectional Surface Scattering Reflectance-Distribution Function( , , )( , , )r i i r ri i r ridL x xS x xdω ωω ω→→ ≡Φ( , )r rdL x ω( , )i iL x ωidωiθrθrφiφˆNrxixTranslucencyUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellGonioreflectometerUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellProperties of BRDF’s1. Linearity2. Reciprocity principle( ) ( )r r i r i rf fω ω ω ω→ = →From Sillion, Arvo, Westin, GreenbergUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellProperties of BRDF’s3. Isotropic vs. anisotropic4. Energy conservation( , ; , ) ( , , )r i i r r r i r r if fθ ϕ θ ϕ θ θ ϕ ϕ= −( , , ) ( , , ) ( , , )r i r r i r r i i r r i r r if f fθ θ ϕ ϕ θ θ ϕ ϕ θ θ ϕ ϕ− = − = −Reciprocity and isotropyUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellEnergy Conservation( )cos( ) cos( ) ( )cos cos( ) cos1rir iir r r rrii i i ir i r i i i i r ri i i iL dddL df L d dL dω θ ωω θ ωω ω ω θ ω θ ωω θ ωΩΩΩ ΩΩΦ=Φ→=≤∫∫∫∫∫iΩrΩUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellThe ReflectanceDefinition: Reflectance is ratio of reflected to incident powerConservation of energy: 0 <  < 13 by 3 set of possibilities:Units:  [dimensionless], fr [1/steradians]( ) cos cos( )cos( ) ( )cos cos( ) cosr iir iir i r i i r ri ri ir i r i i i i r ri i i if d ddf L d dL dω ω θ ω θ ωρθ ωω ω ω θ ω θ ωω θ ωΩ ΩΩΩ ΩΩ→Ω → Ω ≡→≤∫∫∫∫∫∫iΩrΩ{ }{ }2 2, , , ,i i i r r rd H d Hω ωΩ × ΩUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellLaw of Reflectionr iθ θ=rθiθiϕrϕ( )mod 2r iϕ ϕ π π= +NˆRˆIˆˆ ˆ ˆ ˆ ˆ ˆ( ) 2 co s 2( )θ+ − = =− •R I N I N Nˆ ˆ ˆ ˆ ˆ2( )= − •R I I N NUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellIdeal Reflection (Mirror),(cos cos )( , ; , ) ( )cosi rr m i i r r i rifδ θ θθ ϕ θ ϕ δ ϕ ϕ πθ−= − ±,( , ) ( , )r m r r i r rL Lθ ϕ θ ϕ π= ±, ,( , ) ( , ; , ) ( , ) cos cos(cos cos )( ) ( , ) cos coscos( , )r m r r r m i i r r i i i i i ii ri r i i i i i iii r rL f L d dL d dLθ ϕ θ ϕ θ ϕ θ ϕ θ θ ϕδ θ θδ ϕ ϕ π θ ϕ θ θ ϕθθ ϕ π=−= − ±= ±∫∫rθiθ( , )i i iL θ ϕ( , )r r rL θ ϕUniversity of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellSnell’s Lawsin sini i t tn nθ θ=ˆ ˆ ˆ ˆi tn n× = ×N I N TtθiθˆNˆTˆIiϕtϕt iϕ ϕ π= ±University of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellLaw of RefractiontθiθˆNˆTˆI/i tn nμ =ˆ ˆ ˆ ˆμ× = ×N T N Iˆ ˆ ˆ( ) 0μ× − =N T Iˆ ˆ ˆμ γ= +T I N2 2 2ˆ ˆ ˆ1 2μ γ μγ= = + + •T I N( )( ){ }{ }1212222 2ˆ ˆ ˆ ˆ1 1cos 1 sincos coscos c osi ii ti tγ μ μμ θ μ θμ θ θμ θ θ= − • ± − − •= ± −= ±= −I N I N1γ μ← = −( )22ˆ ˆ1 (1 ) 0μ− − • <I NTotal internal reflection:University of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellOptical ManholeFrom Livingston and LynchTotal internal reflection43wn =University of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellFresnel ReflectanceMetal (Aluminum) Dielectric (N=1.5)5( ) (0) (1 (0))(1 cos )F F Fθ θ= + − −Schlick ApproximationGlass n=1.5 F(0)=0.04Diamond n=2.4 F(0)=0.15Gold F(0)=0.82Silver F(0)=0.95University of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellExperimentReflections from a shiny floorFrom Lafortune, Foo, Torrance, Greenberg, SIGGRAPH 97University of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don FussellCook-Torrance Model for MetalsMeasured ReflectanceReflectance of Copper as afunction of wavelength andangle of incidence2πλρLight spectraCopper spectraθApproximated Reflectance( ) (0)(0) ( / 2)( / 2) (0)F FR R RF Fθππ⎡ ⎤−= +⎢ ⎥−⎣ ⎦Cook-Torrance


View Full Document

UT CS 395T - Reflection Models I

Documents in this Course
TERRA

TERRA

23 pages

OpenCL

OpenCL

15 pages

Byzantine

Byzantine

32 pages

Load more
Download Reflection Models I
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Reflection Models I and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Reflection Models I 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?