DOC PREVIEW
MIT 18 01 - Taylor Series

This preview shows page 1-2 out of 6 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.Lecture 37 18.01 Fall 2006 Lecture 37: Taylor Series General Power Series What is cos x anyway? Recall: geometric series 11 + a + a 2 + = for a < 1··· 1 − a | |General power series is an infinite sum: f(x) = a0 + a1x + a2x 2 + a3x 3 + ··· represents f when x < R where R = radius of convergence. This means that for x < R, |anx 0| | n| | n| → as n → ∞ (“geometrically”). On the other hand, if 1|x| > R, then 1|anx | does not tend to 0. For example, in the case of the geometric series, if |a| =2 , then |a n| =2n . Since the higher-order terms get increasingly small if |a| < 1, the “tail” of the series is negligible. nExample 1. If a = −1, |a | = 1 does not tend to 0. 1 − 1 + 1 − 1 + ··· The sum bounces back and forth between 0 and 1. Therefore it does not approach 0. Outside the interval −1 < a < 1, the series diverges. Basic Tools Rules of polynomials apply to series within the radius of convergence. Substitution/Algebra 1 = 1 + x + x 2 +1 − x ··· Example 2. x = -u. 1 1 + u = 1 − u + u 2 − u 3 + ··· Example 3. x = −v2 . 1 + 1 v2 = 1 − v 2 + v 4 − v 6 + ··· 1� � � � � � � � � � � � � � Lecture 37 18.01 Fall 2006 Example 4. � �� �1 1 1 − x 1 − x = (1 + x + x 2 + ··· )(1 + x + x 2 + ··· ) Term-by-term multiplication gives: 1 + 2x + 3x 2 + ··· 1Remember, here x is some number like . As you take higher and higher powers of x, the result 2 gets smaller and smaller. Differentiation (term by term) d 1 d � � = 1 + x + x 2 + x 3 + dx 1 − x dx ··· 1 (1 − x)2 = 0 + 1 + 2x + 3x 2 + ··· where 1 is a0, 2 is a1 and 3 is a2 Same answer as Example 4, but using a new method. Integration (term by term) f(x) dx = c + a0 + a1 x 2 + a2 x 3 +2 3 ··· where f(x) = a0 + a1x + a2x 2 + ··· duExample 5. 1 + u 1 + 1 u = 1 − u + u 2 − u 3 + ··· du u2 u3 u4 1 + u = c + u − 2+3 − 4+ ··· x du x2 x3 x4 ln(1 + x) = 1 + u = x − 2+3+40 So now we know the series expansion of ln(1 + x). Example 6. Integrate Example 3. 1 1 + v2 = 1 − v 2 + v 4 − v 6 + ··· dv v3 v5 v7 1 + v2 = c + v − 3+5 − 7+ ··· x dv x3 x5 x7 tan−1 x = 1 + v2 = x − 3+5 − 7+ ··· 0 2� � Lecture 37 18.01 Fall 2006 Taylor’s Series and Taylor’s Formula If f(x) = a0 + a1x + a2x2 + , we want to figure out what all these coefficients are. ··· Differentiating, f�(x) = a1 + 2a2x + 3a3x 2 + ··· f��(x) = (2)(1)a2 + (3)(2)a3x + (4)(3)a4x 2 + ··· f���(x) = (3)(2)(1)a3 + (4)(3)(2)a4x + ··· Let’s plug in x = 0 to all of these equations. f(0) = a0; f�(0) = a1; f��(0) = 2a2; f���(0) = (3!)a3 Taylor’s Formula tells us what the coefficients are: f(n)(0) = (n!)an Remember, n! = n(n − 1)(n − 2) (2)(1) and 0! = 1. Coefficients an are given by: ··· 1 an = f(n)(0) n! xExample 7. f(x) = e . f�(x) = e x f��(x) = e x xf(n)(x) = e f(n)(0) = e 0 = 1 1Therefore, by Taylor’s Formula an = and n! 1 1 1 1 e x = + x + x 2 + x 3 +0! 1! 2! 3! ··· Or in compact form, � n∞xe x = n! n=0 Now, we can calculate e to any accuracy: 1 1 1 1 e = 1 + 1 + + + + +2 3! 4! 5! ··· Example 7. f(x) = cos x. f�(x) = − sin x f��(x) = − cos x 3� � Lecture 37 18.01 Fall 2006 f���(x) = sin x f(4)(x) = cos x f(0) = cos(0) = 1 f�(0) = − sin(0) = 0 f��(0) = − cos(0) = −1 f���(0) = sin(0) = 0 Only even coefficients are non-zero, and their signs alternate. Therefore, cos x = 1 − 12 x 2 + 4!1 x 4 − 6!1 x 6 + 8!1 x 8 + ··· Note: cos(x) is an even function. So is this power series — as it contains only even powers of x. There are two ways of finding the Taylor Series for sin x. Take derivative of cos x, or use Taylor’s formula. We will take the derivative: − sin x = d cos x = 0 − 21 x +4 x 3 6 x 5 +8 x 7 + dx 2 4! − 6! 8! ··· 3 5 7x x x= −x + 3! − 5! + 7! + ··· 3 5 7x x xsin(x) = x − + +3! 5! − 7! ··· Compare with quadratic approximation from earlier in the term: cos x ≈ 1 − 21 x 2 sin x ≈ x We can also write: � 2k 0 2 2 +(2k)! 0! 2! ··· 2 ··· cos x = ∞x(−1)k = (−1)0 x+ (−1)2 x+ = 1 − 1 x k=0 � 2k+1∞xsin x = (2k + 1)!(−1)k ← n = 2k + 1 k=0 Example 8: Binomial Expansion. f(x) = (1 + x)a (1 + x)a = 1 + ax + a(a − 1) x 2 + a(a − 1)(a − 2) x 3 +1 2! 3! ··· 4Lecture 37 18.01 Fall 2006 Taylor Series with Another Base Point A Taylor series with its base point at a (instead of at 0) looks like: f(x) = f(b) + f�(b)(x − b) + f��(b)(x − b)2 + f(3)(b)(x − b)3 + ...2 3! Taylor series for √x. It’s a bad idea to expand using b = 0 because √x is not differentiable at x = 0. Instead use b = 1. � �� � 1 1 1 22 − 1 x 1/2 = 1 + 2(x − 1) + 2!(x − 1)2 + ···


View Full Document

MIT 18 01 - Taylor Series

Documents in this Course
Graphing

Graphing

46 pages

Exam 2

Exam 2

3 pages

Load more
Download Taylor Series
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Taylor Series and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Taylor Series 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?