TAMU ISEN 689 - ISEN689 SystemsThinkingAnalysis_SyllabusSpring09

Unformatted text preview:

1Industrial and Systems Engineering Department ISEN 689 – M.S. Level Graduate Course ISEN 689 Systems Thinking and Analysis INSTRUCTOR Dr. Lewis Ntaimo 239C Zachry 979-862-4066 [email protected] http://ise.tamu.edu/people/faculty/Ntaimo Office Hours: MW 1:30 - 3:00 PM and by appointment TEACHING ASSISTANT Eduardo Pérez-Román 303E Zachry 979-845-3545 [email protected] Office Hours: MW 4:30 – 5:30 PM COURSE DESCRIPTION Introduction to the systems thinking process, systems of systems, and the fundamental considerations associated with the engineering of large-scale systems, or systems engineering. These include systems modeling and design, system development process, needs analysis, concept exploration, concept definition, engineering design, integration and evaluation, and systems engineering management. PREREQUISITES MATH 304 or approval of instructor. COURSE OBJECTIVES This is an introductory course to systems engineering. The aim of the course is to introduce students to systems engineering and the fundamental considerations associated with the engineering of large-scale complex systems. The course provides a comprehensive understanding of systems ideas and methods to help students achieve success with their future challenging projects regardless of their discipline. The course is suitable for students at the master’s level and only requires the student to have basic analytical thinking skills. The course covers, 1) definitions and classification of systems, hierarchical models of complex systems, and systems of systems (SOS), 2) systems thinking ideas and systems engineering tools, 3) functional and information modeling for complex systems, 4) engineering and design of large scale systems, including the system development process, system life cycle models (DoD, ISO/IEC, NSPE), and systems engineering documents, 5) formulation of issues and constraints, from needs analysis, concept exploration, through to concept definition, 6) design and evaluation of SOS Models, from advanced development, engineering design, to system integration and evaluation, 7) systems engineering and systems management. The course will also draw on case studies and examples from several fields including engineering, ecology, healthcare, and energy. To keep up with modern systems engineering tools, the students will be introduced to IDEF methods and the Unified Modeling Language (UML). UML will be required to do homework and other course assignments using IBM Rational Software Modeler, which is available on the computers in the student computer lab.2 TEXTBOOK AND ADDITIONAL COURSE MATERIAL Kossiakoff, A. Sweet, W.N., Systems Engineering Principles and Practice, 2nd Edition, John Wiley & Sons, New York, NY, 2003. ISBN: 0471234435. References: 1. Wymore, W. A., Model-Based Systems Engineering, CRC Press Inc., Boca Raton FL, Chapter 1 & 2, 1993. 2. Blanchard, B.S. and Fabrycky, W.J., Systems Engineering and Analysis, 4th Edition, Prentice Hall, 2005. ISBN: 0131869779. 3. Derek K. Hitchins, Advanced Systems Thinking, Engineering, and Management, Artech House Publishers, 2003. ISBN: 1580536190. 4. Gharajedaghi, J., Systems Thinking, Managing Chaos and Complexity: A Platform for Design Business Architecture, 2nd Edition, Butterworth Heinemann, 2005. ISBN: 0750679735. 5. Systems Engineering Fundamentals: http://www.dau.mil/pubs/gdbks/sys_eng_fund.asp DETAILED TOPICAL OUTLINE (Times are approximate) Next page3Section I – Basic Concepts (~3 weeks) 1. Introduction to Systems Engineering (Kossiakoff, Ch. 1) 1.1 What is Systems Engineering? 1.2 Identifying and classifying a system 1.3 Systems Engineering tools (modeling, simulation, trade-off analysis) 1.4 The system development process 2. Functional and Information Modeling (Kossiakoff, Ch. 2) 2.1 Structure of complex systems 2.2 Model of a complex system 2.3 System building blocks 2.4 The system environment 2.5 Interfaces and interactions 3. Systems Thinking Tools (Hitchins, Ch. 9) 3.1 Causal loop/Influence modeling 3.2 N2 charts 3.3 Systems of systems Section II – Systems Modeling and Design (~5 weeks) Section III – Systems Engineering Processes (~5 weeks) 4. Systems Modeling (Wymore, Ch. 1, 2) 4.1 Discrete (open) systems 4.2 State transition diagrams 4.3 System experiments 4.4 Input, output and state trajectories 4.5 System performance 4.6 Systems theoretical properties of system models 5. Systems Design Requirements 5.1 Input/output requirements 5.2 Technology requirements 5.3 Performance, cost, and trade-off requirements 5.4 System test requirements 6. Systems engineering tools 6.1 Overview of IDEF Methods 6.2 Introduction to object oriented analysis and Unified Modeling Language (UML) 6.3 IBM Rational Software Modeler (will use it for design assignments) 7. The system development process ( Kossiakoff, Ch. 3, 4) 7.1 System life cycle models (DoD, ISO/IEC, NSPE) 7.2 Concept development phases 7.3 Engineering development phases 7.4 Systems Engineering Documents 8. Formulation of Issues and Constraints (Kossiakoff, Ch. 5, 6, 7) 8.1 Needs analysis 8.2 Concept exploration 8.3 Concept definition 9. Design and Evaluation of Systems Models (Kossiakoff, Ch. 8, 9,10) 9.1 Advanced development 9.2 Engineering design 9.3 System integration and evaluation4SEMESTER TEAM PROJECT Students will form semester ‘teams’ comprising of 1-3 students. Each team is going to work on an interesting real-life problem of their choice and apply the systems engineering approach to model, analyze and design a system for the problem. Students are encouraged to work on problems from their thesis or dissertation. Distance learning (DL) students are encouraged to work on problems related to their current job. Each team will learn to use IBM Rational Software Modeler to develop most of their systems engineering documents for the project. Finally, each team will write a project report (due May 5th) and will do a class presentation (time-permitting) the last week of class. DL students are not required to do an in-class presentation but must submit their presentation. CLASS SCHEDULE Lectures: TR 8:00 – 9:15 AM (but will do 8:15 – 9:30 AM) Classroom: 301 Zachry. GRADING The grade for the course will be based homework, exams, semester project, and on the level and quality of your participation during class. No late assignments will be accepted. There will be a midterm and a final in-class exam


View Full Document

TAMU ISEN 689 - ISEN689 SystemsThinkingAnalysis_SyllabusSpring09

Download ISEN689 SystemsThinkingAnalysis_SyllabusSpring09
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view ISEN689 SystemsThinkingAnalysis_SyllabusSpring09 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view ISEN689 SystemsThinkingAnalysis_SyllabusSpring09 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?