DOC PREVIEW
Berkeley ELENG 241B - Low Power Design

This preview shows page 1-2-22-23 out of 23 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

EE2411UC Berkeley EE241 B. NikolicEE241 - Spring 2002Advanced Digital Integrated CircuitsLecture 13Low Power DesignUC Berkeley EE241 B. NikolicAnnouncementsl Homework #2 due 3/12l Midterm reports due 3/15» ~5 page report, consisting of literature review and detailed outline of future work.EE2412UC Berkeley EE241 B. NikolicGlitching in Static CMOSABXCZABC 101 000XZ Unit Delayalso called: dynamic hazardsObserve: No glitching in dynamic circuitsUC Berkeley EE241 B. NikolicExample 1: Chain of NOR Gates0 1 2 3t (nsec)0.02.04.06.0V (Volt)out1out3out5out7out2out4out6out81out1 out2 out3 out4 out5...EE2413UC Berkeley EE241 B. NikolicExample 2: Adder Circuit0 5 100.02.04.0Time, nsSum Output Voltage, VoltsCinS15S1065432S1Add0 Add1 Add2 Add14 Add15S0 S1 S2 S14 S15CinUC Berkeley EE241 B. NikolicF1F2F3F1F3F2000012000011Equalize Lengths of Timing Paths Through DesignHow to Cope with Glitching?EE2414UC Berkeley EE241 B. NikolicExample: Carry Ripple versus Carry LookaheadA7FA6A5A4A3A2A1A0A0A1A2A3A4A5A6A7FRippleLookaheadUC Berkeley EE241 B. NikolicShort Circuit CurrentsVin VoutCLVddIVDD(mA)0.150.100.05Vin(V)5.04.03.02.01.00.0EE2415UC Berkeley EE241 B. NikolicShort Circuit Currents - UnloadedUC Berkeley EE241 B. NikolicImpact of rise/fall times on short-circuit currentsVDDVoutCLVinISC ≈ 0VDDVoutCLVinISC ≈ IMAXLarge capacitive load Small capacitive loadEE2416UC Berkeley EE241 B. NikolicHow to keep Short-Circuit Currents Low?UC Berkeley EE241 B. NikolicStatic Power ConsumptionVin=5VVoutCLVddIstatPstat= P(In=1).Vdd. Istat• Dominates over dynamic consumption• Not a function of switching frequencyEE2417UC Berkeley EE241 B. NikolicLeakageVoutVddSub-ThresholdCurrentDrain JunctionLeakageSub-Threshold Current Dominant FactorUC Berkeley EE241 B. NikolicSub-Threshold in MOSVT=0.6VT=0.2√IDVGSLower Bound on Threshold to Prevent LeakageEE2418UC Berkeley EE241 B. NikolicSubthreshold Leakage ComponentLeakage control is critical for low-voltage operationVDS=1VID+-VGS0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010-1210-1110-1010-910-810-710-610-510-410-310-2ID, AVGS, VVT = 0.4 VVT = 0.1VUC Berkeley EE241 B. NikolicProjected LeakageEE2419UC Berkeley EE241 B. NikolicPrinciples of Power Reductionl Reducing switching probability (α)» Architectures» Power simulators/estimators (time consuming)» Glitching power reduction (15-20%)l Reducing load capacitance» Technology scaling» Gate sizing, minimization, interconnect, CAD» Circuit techniques (PTL, …)l Reducing supply voltage» Quadratic impact on power» Impact on delay – how to maintain throughput?l Reducing frequencyfVVCPDDswingL⋅⋅⋅⋅α~DDswingLVVCE⋅⋅⋅α~UC Berkeley EE241 B. NikolicActive Power Reductionl Reducing switching probability (α)» Architectures» Power simulators/estimators (time consuming)» Glitching power reduction (15-20%)l Reducing load capacitance» Technology scaling» Gate sizing, minimization, interconnect, CAD» Circuit techniques (PTL, …)l Reducing supply voltage» Quadratic impact on power» Impact on delay – how to maintain throughput?l Reducing frequencyfVVCPDDswingL⋅⋅⋅⋅α~DDswingLVVCE⋅⋅⋅α~EE24110UC Berkeley EE241 B. NikolicSupply Voltage Scalingl Fixed throughput applications (e.g. signal processing for communications)» Reduce supply» Maintain throughput by paralellism/pipeliningl Variable throughput (microprocessors)» Dynamic voltage scalingl Relevant metricsUC Berkeley EE241 B. NikolicSupply Voltage Scalingl How to maintain throughput under reduced supply?l Introducing more parallelism/pipelining» Area increase – cost up» Cost/power tradeoffl Multiple voltage domains» Separate supply voltages for different blocks» Lower VDD for slower blocks» Cost of DC-DC converters» Mix cells with different VDDs – level converters l Dynamic voltage scaling – with variable throughputl Reducing VTHto improve speed» Leakage issuesEE24111UC Berkeley EE241 B. NikolicPower and DelayKuroda/SakuraiUC Berkeley EE241 B. NikolicPower-Delay vs Energy-Delay ProductKuroda/SakuraiEE24112UC Berkeley EE241 B. NikolicReducing VddP x td = Et = CL * Vdd2E(Vdd=2)= (CL) * (2)2(CL) * (5)2E(Vdd=5)Strong function of voltage (V2 dependence).Relatively independent of logic function and style.E(Vdd=2) ≈ 0.16 E(Vdd =5)0.030.050.070.10.150.200.300.500.701.001.51 2 551 stage ring oscillator 8-bit adderVdd (volts)quadratic dependenceNORMALIZED POWER-DELAY PRODUCT Power Delay Product Improves with lowering VDD.UC Berkeley EE241 B. NikolicLower VddIncreases DelayCL* VddI=TdTd(Vdd=5)Td(Vdd=2)= (2) * (5 - 0.7)2(5) * (2 - 0.7)2≈4I ~ (Vdd- Vt)2Relatively independent of logic function and style.1.001.502.002.503.003.504.004.505.005.506.006.507.007.502.00 4.00 6.00Vdd(volts)NORMALIZED DELAYadder (SPICE)microcoded DSP chipmultiplieradder ring oscillatorclock generator2.0µm technologyEE24113UC Berkeley EE241 B. NikolicPDP for Different Logic FamiliesChandrakasanJSSC 4/92UC Berkeley EE241 B. NikolicLowering the ThresholdVt = 0.2Vt= 0 IDVGS Reduces the Speed Loss, But Increases LeakageVddDelay2VtEE24114UC Berkeley EE241 B. NikolicReducing Effective CapacitanceGlobal bus architectureLocal bus architectureShared Resources incur Switching OverheadUC Berkeley EE241 B. NikolicArchitecture-Driven Voltage ScalingChandrakasanJSSC 4/92SimpleParallelEE24115UC Berkeley EE241 B. NikolicArchitecture-Driven Voltage ScalingPipelinedParallel-pipelinedUC Berkeley EE241 B. NikolicEnergy-Efficiency Metric: Max ThroughputProcess Queuefrom [Burd95](HICSS 95)EE24116UC Berkeley EE241 B. NikolicPower?SecondOperationsOperationEnergyPower ×=Optimize:•Energy to perform the operation (operations per battery life)•Operations per secondUC Berkeley EE241 B. NikolicDelay and Power under Voltage ScalingEE24117UC Berkeley EE241 B. NikolicProcessors for Portable Devices1000100101Performance (MIPS)Processor Energy (Watt*sec)1 100.1• Eliminate performance ↔ energy trade-off.PDAsPocket-PCsNotebookComputersDynamicVoltageScalingBurdISSCC’00UC Berkeley EE241 B. NikolicProcessor Usage ModeltimeSystem IdleDesiredThroughputMaximum Processor SpeedBackground andhigh-latency processesCompute-intensive andlow-latency processes• Maximize Peak Throughput• Minimize Average Energy/operationSystem Optimizations:BurdISSCC’00EE24118UC Berkeley EE241 B. NikolicCommon Design Approaches (Fixed VDD)Compute ASAP:Delivered ThroughputClock Frequency Reduction:ExcessthroughputAlways high throughputEnergy/operation remains unchanged…while throughput scaled down with


View Full Document
Download Low Power Design
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Low Power Design and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Low Power Design 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?