Unformatted text preview:

Nuclear Reactions KinematicsPowerPoint PresentationSlide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Nuclear ReactionsKinematics€ d +6Li → α + α€ Td= 2MeV€ θ€ φ € r p α1 € r p d € r p α2 € pd= 2mdTdvd=2Tdmdr p cm=r p d+r p Lir V cm=r p dmd+ mLi € r p d*+r p Li*= 0Td*=p*( )22mdTLi*=p*( )22mLiT*= Td*+ TLi* € r v d=r v d*+r V cmr p d*=r p d− mdr V cmr p d*=r p d− mdr p dmd+ mLir p d*=r p dmLimd+ mLi= md'r v d€ d +6Li → α + α€ Td= 2MeV€ θ€ φ € r p α1 € r p d € r p α2€ Ti*mdc2 + mLic2E*mBec20.0€ Tf*m c2 + mc2€ d +6Li → α + α € pd= 2mdTd=2mdc2Tdc MeVc ⎛ ⎝ ⎜ ⎞ ⎠ ⎟vd=2Tdmd→ βd≡vdc=2Tdmdc2r p cm=r p d+r p Li MeV/c( )r V cm=r p dmd+ mLi→ βcm≡r V cmc=r p dcmdc2+ mLic2Work in units of MeV€ d +6Li → α + α€ Ei= EfMdc2+ MLic2+ Td= Mαc2+ Mαc2+ Tα1+ Tα2Calculate the Q-valueLet M-values = nuclear masses€ mZ ,Ac2= MNc2− Z mec2+ Bii=1Z∑m-values = isotopic massesConservation of electric charge  total me values before/after are equal; therefore subtract to zero.€ m1,2c2+ m3,6c2+ Td≈ m2,4c2+ m2,4c2+ Tα1+ Tα2Approximation…€ d +6Li → α + αCalculate the Q-value€ m1,2c2+ m3,6c2+ Td≈ m2,4c2+ m2,4c2+ Tα1+ Tα2€ Q = m1,2c2+ m3,6c2− m2,4c2− m2,4c2= Tα1+ Tα2− Tdinitial state final state€ Bii=1Z =1∑+ Bii=1Z = 3∑≈ Bii=1Z = 2∑+ Bii=1Z = 2∑Appproximation…€ Q = Δ1,2+ Δ3,6− Δ2,4− Δ2,4mass defects€ d +6Li → α + αCalculate the Q-value€ Q = m1,2c2+ m3,6c2− m2,4c2+ m2,4c2= Tα1+ Tα2− Td€ Q > 0 → m1,2c2+ m3,6c2> m2,4c2+ m2,4c2 ; Tα1+ Tα2− Td> 0€ Q < 0 → m1,2c2+ m3,6c2< m2,4c2+ m2,4c2 ; Tα1+ Tα2− Td< 0Q < 0 cannot occur spontaneously - threshold Td € Q = m1,2c2+ m3,6c2− m2,4c2+ m2,4c2= Tα1*+ Tα2*− Td*€ Q = Tα1*+ Tα2*− Td (min)*€ d +6Li → α + αCross section€ I x( )= I 0( )e−Ndσ x€ Y = I 0( )Ndσ xσ =YI 0( )Ndxσ E,θ( )=Y E,θ( )I 0( )Ndx€ I x( )≈ I 0( )1− Ndσ x...[ ]€ Ndx ≡areal target densityx€ I 0( )€ I x( )€ Ndtarget density (#/cm3)€ Y x( )= I 0( )− I x( )Y is“yield”€ d +6Li → α + αCross section€ I x( )= I 0( )e−Ndσ x€ Y x( )= I 0( )− I x( )€ Y = I 0( )Ndσ xσ =YI 0( )Ndxσ E,θ( )=Y E,θ( )I 0( )Ndx€ I x( )≈ I 0( )1− Ndσ x...[ ]x€ I 0( )€ I x( )detector€ dσ E,θ( )dΩ=1I 0( )NdxdY E,θ( )dΩdY E,θ( )dΩ≈ΔC E,θ( )ΔΩ€ Ω ≡4πR2R2= 4πΩ =total areaR2ΔΩ =detector areaR2€ d +6Li → α + αCross sectionx€ I 0( )€ I x( )detector* to *P1*P2*Pcm € r v α1=r v α1*+r V cm€ vα1(x )= vα1(x )*+ Vcmx*y*€ vα1(y )= vα1(y


View Full Document

VALPO PHYSICS 430 - Nuclear Reactions

Download Nuclear Reactions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Nuclear Reactions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Nuclear Reactions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?