Pitt CS 1571 - Modeling uncertainty using probabilities

Unformatted text preview:

1CS 1571 Intro to AIM. HauskrechtCS 1571 Introduction to AILecture 23Milos [email protected] Sennott SquareModeling uncertainty using probabilitiesCS 1571 Intro to AIM. HauskrechtAdministration• Final exam:– December 11, 2006– 12:00-1:50pm, 5129 Sennott Square2CS 1571 Intro to AIM. HauskrechtUncertaintyTo make diagnostic inference possible we need to represent knowledge (axioms) that relate symptoms and diagnosis Problem: disease/symptoms relations are not deterministic– They are uncertain (or stochastic) and vary from patient to patientPneumoniaCoughFeverPalenessWBC countCS 1571 Intro to AIM. HauskrechtModeling the uncertainty.Key challenges:• How to represent the relations in the presence of uncertainty? • How to manipulate such knowledge to make inferences?– Humans can reason with uncertainty. PneumoniaCoughFeverPalenessWBC count?3CS 1571 Intro to AIM. HauskrechtMethods for representing uncertaintyProbability theory • A well defined theory for modeling and reasoning in the presence of uncertainty• A natural choice to replace certainty factors Facts (propositional statements)• Are represented via random variables with two or more valuesExample: is a random variablevalues: True and False• Each value can be achieved with some probability:001.0)(==TruePneumoniaP005.0)(==highWBCcountPPneumoniaCS 1571 Intro to AIM. HauskrechtModeling uncertainty with probabilitiesProbabilistic extension of propositional logic.• Propositions:– statements about the world– Represented by the assignment of values to random variables• Random variables:– Boolean – Multi-valued– ContinuousFalseTruePneumonia ,either is },,,{ of one is SevereModerateMildNopainPainRandom variable ValuesRandom variableValues><250 ; 0in valuea is HeartRate Random variableValues!!4CS 1571 Intro to AIM. HauskrechtProbabilitiesUnconditional probabilities (prior probabilities)Probability distribution• Defines probabilities for all possible value assignments to a random variable• Values are mutually exclusive001.0)(==TruePneumoniaP001.0)( =PneumoniaP005.0)(== highWBCcountPor001.0)(== TruePneumoniaP999.0)(== FalsePneumoniaP)(PneumoniaPPneumoniaTrueFalse001.0999.0999.0)(== FalsePneumoniaPCS 1571 Intro to AIM. HauskrechtProbability distributionDefines probability for all possible value assignments001.0)(== TruePneumoniaP999.0)(== FalsePneumoniaP1)()(==+= FalsePneumoniaPTruePneumoniaP)(PneumoniaPPneumoniaTrueFalse001.0999.0005.0)(== highWBCcountP)(WBCcountPWBCcounthighnormal005.0993.0993.0)(== normalWBCcountP002.0)(== highWBCcountPlow 002.0Probabilities sum to 1 !!!Example 1:Example 2:5CS 1571 Intro to AIM. HauskrechtJoint probability distributionJoint probability distribution (for a set variables)• Defines probabilities for all possible assignments of values to variables in the setExample: variables Pneumonia and WBCcounthighnormal lowPneumoniaTrueFalseWBCcount0008.00042.00001.09929.00001.00019.0),( WBCcountpneumoniaPmatrix32×Is represented by CS 1571 Intro to AIM. HauskrechtJoint probabilitiesMarginalization• reduces the dimension of the joint distribution• Sums variables out )(WBCcountP005.0993.0 002.0),( WBCcountpneumoniaPhighnormal lowPneumoniaTrueFalseWBCcount0008.00042.00001.09929.00001.00019.0)(PneumoniaP001.0999.0Marginalization (here summing of columns or rows)matrix32×6CS 1571 Intro to AIM. HauskrechtFull joint distribution• the joint distribution for all variables in the problem– It defines the complete probability model for the problem• Example: pneumonia diagnosisVariables: Pneumonia, Fever, Paleness, WBCcount, Cough– Full joint defines the probability for all possible assignments of values to Pneumonia, Fever, Paleness, WBCcount, Cough ),,,,( FPalenessTCoughTFeverHighWBCcountTPneumoniaP ===== ),,,,( TPalenessFCoughTFeverHighWBCcountTPneumoniaP =====Ketc ),,,,( TPalenessTCoughTFeverHighWBCcountTPneumoniaP =====CS 1571 Intro to AIM. HauskrechtConditional probabilitiesConditional probability distribution • Defines probabilities for all possible assignments, given a fixed assignment to some other variable values)|()|(highWBCcountfalsePneumoniaPhighWBCcounttruePneumoniaP==+==0.10.10.1)|( WBCcountPneumoniaPhighnormal lowPneumoniaTrueFalseWBCcount08.092.00001.09999.00001.09999.03 element vector of 2 elements)|( highWBCcounttruePneumoniaP==7CS 1571 Intro to AIM. HauskrechtConditional probabilitiesConditional probability• Is defined in terms of the joint probability:• Example:=== )|( highWBCcounttruepneumoniaP0)( s.t. )(),()|( ≠= BPBPBAPBAP)(),(highWBCcountPhighWBCcounttruepneumoniaP====== )|( highWBCcountfalsepneumoniaP)(),(highWBCcountPhighWBCcountfalsepneumoniaP===CS 1571 Intro to AIM. HauskrechtConditional probabilities• Conditional probability distribution. • Product rule. Join probability can be expressed in terms of conditional probabilities• Chain rule. Any joint probability can be expressed as a product of conditionals)()|(),,(1,11,121 −−=nnnnXXPXXXPXXXP KKK0)( s.t. )(),()|( ≠= BPBPBAPBAP)()|(),( BPBAPBAP=)()|()|(2,12,111,1 −−−−=nnnnnXXPXXXPXXXP KKK∏=−=niiiXXXP11,1)|( K8CS 1571 Intro to AIM. HauskrechtBayes ruleConditional probability. Bayes rule:When is it useful?• When we are interested in computing the diagnostic query from the causal probability• Reason: It is often easier to assess causal probability– E.g. Probability of pneumonia causing fevervs. probability of pneumonia given fever )(),()|(BPBAPBAP =)()|(),( APABPBAP= )()()|()|(BPAPABPBAP = )()()|()|(effectPcausePcauseeffectPeffectcauseP =CS 1571 Intro to AIM. HauskrechtBayes Rule in a simple diagnostic inference. • Device (equipment) operating normally or malfunctioning.– Operation of the device sensed indirectly via a sensor• Sensor reading is either high or lowDevice statusSensor readingP(Device status)0.9 0.1normal malfunctioningDevice\Sensor high lownormal 0.1 0.9malfunctioning 0.6 0.4P(Sensor reading| Device status)9CS 1571 Intro to AIM. HauskrechtBayes Rule in a simple diagnostic inference.• Diagnostic inference: compute the probability of device operating normally or malfunctioning given a sensor reading• Note that typically the opposite conditional probabilities are given to us: they are much easier to estimate• Solution: apply Bayes rule to reverse the conditioning variables?)readingSensor |status


View Full Document

Pitt CS 1571 - Modeling uncertainty using probabilities

Download Modeling uncertainty using probabilities
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Modeling uncertainty using probabilities and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Modeling uncertainty using probabilities 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?