Unformatted text preview:

Slide 1Project Discussion – Ideal Diode equationsProject Discussion – Ideal Diode Forward Current EquationsSPICE Diode ModelDerivation TipsGummel-Poon Static npn Circuit ModelGummel-Poon Static npn Circuit ModelGummel Poon npn Model EquationsCharge components in the BJTGummel Poon Base ResistanceBJT Characterization Forward GummelIdeal F-G DataBJT Characterization Reverse GummelIdeal R-G DataIdeal 2-terminal MOS capacitor/diodeBand models (approx. scale)Flat band condition (approx. scale)Equivalent circuit for Flat-BandReferencesEE 5340Semiconductor Device TheoryLecture 22 – Spring 2011Professor Ronald L. [email protected]://www.uta.edu/roncProject Discussion – Ideal Diode equations©rlc L22-12Apr20112•Ideal diode, Jsexpd(Va/(hVt))–ideality factor, h•Recombination, Js,recexp(Va/(2hVt))–appears in parallel with ideal term•High-level injection, (Js*JKF)1/2exp(Va/(2hVt))–SPICE model by modulating ideal Js term•Va = Vext - J*A*Rs = Vext - Idiode*RsProject Discussion – Ideal Diode Forward Current Equations©rlc L22-12Apr20113Id = area·(Ifwd - Irev)Ifwd = forward current = Inrm·Kinj + Irec·KgenInrm = normal current = IS·(eVd/(N·Vt)-1)if: IKF > 0then: Kinj = (IKF/(IKF+Inrm))1/2else: Kinj = 1Irec = recombination current = ISR·(eVd/(NR·Vt)-1)©rlc L22-12Apr20114•Dinj–N~1, rd~N*Vt/iD–rd*Cd = TT =–Cdepl given by CJO, VJ and M•Drec–N~2, rd~N*Vt/iD–rd*Cd = ?–Cdepl =?SPICE DiodeModeltDerivation Tips©rlc L22-12Apr20115  15.273ln1TEMPminDAjAjiddvNkqTT©rlc L22-12Apr20116Gummel-Poon Staticnpn Circuit ModelCEBB’ILCILEIBFIBR ICC - IEC =IS(exp(vBE/NFVt- exp(vBC/NRVt)/QBRCRERBB©rlc L22-12Apr20117Gummel-Poon Staticnpn Circuit ModelCEBB’ILCILEIBFIBRICC - IEC = {IS/QB}* {exp(vBE/NFVt)-exp(vBC/NRVt)}RCRERBBIntrinsicTransistor©rlc L22-12Apr20118Gummel Poon npnModel EquationsIBF = ISexpf(vBE/NFVt)/BFILE = ISEexpf(vBE/NEVt)IBR = ISexpf(vBC/NRVt)/BRILC = ISCexpf(vBC/NCVt)QB = (1 + vBC/VAF + vBE/VAR ) {½ + [¼ + (BFIBF/IKF + BRIBR/IKR)]1/2 }©rlc L22-12Apr20119Charge componentsin the BJT**From Getreau, Modeling the Bipolar Transistor, Tektronix, Inc.©rlc L22-12Apr201110Gummel PoonBase ResistanceIf IRB = 0, RBB = RBM+(RB-RBM)/QBIf IRB > 0RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) [1+144iB/(p2IRB)]1/2-1 (24/p2)(iB/IRB)1/2z =From An Accurate Mathematical Model for the Intrinsic Base Resistance of Bipolar Transistors, by Ciubotaru and Carter, Sol.-St.Electr. 41, pp. 655-658, 1997.RBB = Rbmin + Rbmax/(1 + iB/IRB)aRB©rlc L22-12Apr201111BJT CharacterizationForward GummelvBCx= 0 = vBC + iBRB - iCRCvBEx = vBE +iBRB +(iB+iC)REiB = IBF + ILE = ISexpf(vBE/NFVt)/BF+ ISEexpf(vBE/NEVt)iC = bFIBF/QB =ISexpf(vBE/NFVt)/QB+-iCRCiBRERBvBExvBCvBE++--©rlc L22-12Apr201112Ideal F-G DataiC and iB (A) vs. vBE (V)N = 1  1/slope = 59.5 mV/decN = 2  1/slope = 119 mV/decBJ T I (A) vs. Vbe (V) for the G-P model Forward Gummel configuration (Vbcx=0)1.E-161.E-151.E-141.E-131.E-121.E-111.E-101.E-091.E-081.E-071.E-061.E-051.E-041.E-031.E-020.0 0.2 0.4 0.6 0.8I cI b©rlc L22-12Apr201113BJT CharacterizationReverse Gummel+-iERCiBRERBvBCxvBCvBE++--vBEx= 0 = vBE + iBRB - iEREvBCx = vBC +iBRB +(iB+iE)RCiB = IBR + ILC = ISexpf(vBC/NRVt)/BR+ ISCexpf(vBC/NCVt)iE = bRIBR/QB =ISexpf(vBC/NRVt)/QB©rlc L22-12Apr201114Ideal R-G DataiE and iB (A) vs. vBE (V)N = 1  1/slope = 59.5 mV/decN = 2  1/slope = 119 mV/decBJ T I (A) vs. Vbe (V) for the G-P model Forward Gummel configuration (Vbcx=0)1.E-161.E-151.E-141.E-131.E-121.E-111.E-101.E-091.E-081.E-071.E-061.E-051.E-041.E-031.E-020.0 0.2 0.4 0.6 0.8I cI bIe©rlc L22-12Apr201115Ideal 2-terminalMOS capacitor/diodex-xox0SiO2silicon substrateVgateVsubconducting gate,area = LWtsub0yL©rlc L22-12Apr201116Band models (approx. scale)EoEcEvqcox ~ 0.95 eVmetal silicon dioxide p-type s/cqfm= 4.1 eV for AlEoEFmEFpEoEcEvEFiqfs,pqcSi= 4.05eVEg,ox~ 8 eV©rlc L22-12Apr201117Flat band condition (approx. scale)Ec,OxEvAlSiO2p-Siq(fm-cox)= 3.15 eVEFmEFpEcEvEFiq(cox-cSi)=3.1eVEg,ox~8eVcond band-flat forVVV8.0 VeV8.0EETheneV85.0EEIfsgMSfpfmFBfpfmfpcqffp= 3.95eV©rlc L22-12Apr201118Equivalent circuitfor Flat-Band•Surface effect analogous to the extr Debye length = LD,extr = [eVt/(qNa)]1/2•Debye cap, C’D,extr = eSi/LD,extr•Oxide cap, C’Ox = eOx/xOx•Net C is the series combOxextr,Dtot'C1'C1'C1C’OxC’D,extr©rlc L22-12Apr201119References* Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997.**Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York,


View Full Document

UT Arlington EE 5340 - Lecture Notes

Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?