Unformatted text preview:

Synthesis Discrete-Tim e LTI• Given an open-loop generali zed plant, state equationsxk+1ekyk=A B1B2C1D11D12C2D21D22xkdkuk• Goal: determine if there is a linear controller K,ξk+1uk=AKBKCKDKξkyk(5.11)such that the closed-loop system is– well-defined,– stable, and– has kGedk2←2= kGedk∞< 1.74Fact 1 Characterizing Stability and GainLinear system,xk+1ek=A BC Dxkdk=: MxkdkThen, ρ(A) < 1, max|z|≥1¯σD + C(zI − A)−1B< 1 if and only if there exists0 ≺ W = W∗∈ Fn×nwith¯σW1/2ImA BC DW−1/2Im< 175Fact 2 Constant Matrix Optim ization1. Given R ∈ Fl×l, U ∈ Fl×mand V ∈ Fp×l, where m, p ≤ l.2. Suppose U⊥∈ Fl×(l−m)and V⊥∈ F(l−p)×lhave•U U⊥,VV⊥are both invertible• U∗U⊥= 0m×(l−m), V V∗⊥= 0p×(l−p)3. Let Z ⊂ Fl×lbe a given set of positive definite, Hermitian matricesTheninfQ∈Fm×pZ∈Z¯σhZ1/2(R + UQV ) Z−1/2i< 1if and only if there is a Z ∈ Z such thatV⊥(R∗ZR − Z) V∗⊥≺ 0andU∗⊥RZ−1R∗− Z−1U⊥≺ 0.76Fact 3 Schur ComplementsSuppose that X11∈ Fn×n, Y11∈ Fn×n, with X11= X∗11≻ 0, a nd Y11=Y∗11≻ 0. Let r be a non-negati ve integer. Then there exists matrices X12∈Fn×r, X22∈ Fr×rsuch that X22= X∗22, andX11X12X∗12X22≻ 0 ,X11X12X∗12X22−1=Y11?? ?if and only ifX11InInY11 0⇔ X11 Y−111andrankX11InInY11≤ n + r⇔ rankX11− Y−111≤ rOnto problem...77Synthesis Discrete-Tim e LTI (co nt’d)Write closed-loop system as static feedback around an extended system. Letm denote the (as of yet unknown) state-dimension of the controller. Definean extended plantxk+1ξk+1ekξkyk=A 0 B10 B20 0m0 Im0C10 D110 D120 Im0 0 0C20 D210 D22xkξkdkξk+1ukCall this 5× 5 block matrix Mmss. For the co ntroller in (5.11), define a matrixKssasKss:=AKBKCKDK∈ R(m+nu)×(m+ny)In this notation, the closed-loop system is governedxk+1ξk+1ek= FL(Mmss, Kss)xkξkdk(5.12)FL(Mmss, Kss) isA 0 B10 0m0C10 D11+0 B2Im00 D12KssI −0 00 D22Kss−10 Im0C20 D2178Synthesis Discrete-Tim e LTI (co nt’d)Contro ller achieves stability and kGedk∞< 1 if and only if there exists aW ∈ R(n+m)×(n+m)such that W = WT≻ 0 and¯σW1200 IneFL(Mmss, Kss)W−1200 Ind< 1This is the equation to solve by searching over1. integers m ≥ 0,2. Kss∈ R(m+nu)×(m+ny)and3. W ∈ R(n+m)×(n+m)Without loss of generali ty D22= 0, so definingR :=A 0 B10 0m0C10 D11, U :=0 B2Im00 D12, V :=0 Im0C20 D21givesFL(Mmss, Kss) = R + UKssVClearly, matrices U⊥and V⊥have the formU⊥=U⊥,10U⊥,2, V⊥= [V⊥,10 V⊥,2]where t he matrices U⊥,1, U⊥,2, V⊥,1and V⊥,2are det ermined f rom the data inU and V (could use svd in Matlab).79Synthesis Discrete-Tim e LTI (co nt’d)For notational purposes, defineE :=A B1C1D11Use Y1, Y2and Y3to denote the various entries of the positive definite scalingmatrix W ∈ R(n+m)×(n+m), and X1, X2and X3for W−1,W =Y1Y2YT2Y3W−1=X1X2XT2X3Theorem: There is a controller achieving closed-loop stabi lity and kGedk∞<1if and only if: there is an integer m ≥ 0, a matrix Kss∈ R(m+nu)×(m+ny)and and a matrix 0 ≺ W = WT∈ R(n+m)×(n+m)with Z := diag [W, I]and¯σZ12(R + UKssV ) Z−12< 1if and only if: there is an integer m ≥ 0 , and a matrix 0 ≺ W = WT∈R(n+m)×(n+m)with Z := diag [W, I]UT⊥RZ−1RT− Z−1U⊥≺ 0andV⊥RTZR − ZVT⊥≺ 0Plugging in, and simplifying, gi ves80Synthesis Discrete-Tim e LTI (co nt’d)if and only if: there exist matrices X1, Y1∈ Rn×n, an integer m ≥ 0, withmatrices X2, Y2∈ Rn×m, X3, Y3∈ Rm×m, satisfyingX1X2XT2X3≻ 0 ,X1X2XT2X3−1=Y1Y2YT2Y3such thatUT⊥,1UT⊥,2EX100 IET−X100 IU⊥,1U⊥,2≺ 0andV⊥,1V⊥,2ETY100 IE −Y100 IVT⊥,1VT⊥,2≺ 0Now use Schur complement lemma about extension...81Synthesis Discrete-Tim e LTI: AMI Solutionsif and only if: there exi st matrices X1= XT1≻ 0, Y1= YT1≻ 0 ∈ Rn×n,such thatUT⊥,1UT⊥,2EX100 IET−X100 IU⊥,1U⊥,2≺ 0andV⊥,1V⊥,2ETY100 IE −Y100 IVT⊥,1VT⊥,2≺ 0andX1InInY1 0Remarks:• These equation impose convex constraints on the varia bles {X1, Y1}• Determining the feasibility (or non-feasi bility) of the equations is a con-vex feasibil ity problem• In fact, these expressions ar e all affine in the variables {X1, Y1}, and arecalled affine matrix inequalities (AMI), or just linear matrix inequalities(LMI)• The dimension m necessary to fill out X1and Y1is equal to the rank ofX1− Y−11.• This is at most equal t o n. Hence, if a controller can achieve kGedk∞<1, then without loss i n genera lity, there is a co ntroller with stat e dimen-sion less than or equal to that of the


View Full Document

Berkeley MECENG 234 - Synthesis

Download Synthesis
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Synthesis and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Synthesis 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?