CU-Boulder ECEN 5807 - High frequency dynamics of converters operating in DCM

Unformatted text preview:

PowerPoint PresentationSlide 2Slide 3Slide 4Slide 5Slide 6Introduction to Converter Sampled-Data ModelingObjectivesExample: A/D and D/A conversionModeling objectivesModelSamplingSlide 13Sampling in frequency domainSampling in frequency domain: derivationSlide 16AliasingZero-order holdZero-order hold: time domainZero-order hold: frequency domainSampled-data system example: frequency domainZero-order hold: frequency responsesSlide 23Zero-order hold: 1st-order approximationSlide 25How does any of this apply to converter modeling?PWM is a small-signal sampler!General sampled-data modelApplication to DCM high-frequency modelingSlide 30DCM inductor current high-frequency responseConclusions1ECEN5807 Intro to Converter Sampled-Data Modeling2ECEN5807 Intro to Converter Sampled-Data Modeling3ECEN5807 Intro to Converter Sampled-Data Modeling4ECEN5807 Intro to Converter Sampled-Data Modeling5ECEN5807 Intro to Converter Sampled-Data Modeling6ECEN5807 Intro to Converter Sampled-Data Modeling7ECEN5807 Intro to Converter Sampled-Data ModelingIntroduction to Converter Sampled-Data Modeling ECEN 5807 Dragan Maksimović8ECEN5807 Intro to Converter Sampled-Data ModelingObjectives•Better understanding of converter small-signal dynamics, especially at high frequencies•Applications–DCM high-frequency modeling–Current mode control–Digital control9ECEN5807 Intro to Converter Sampled-Data ModelingExample: A/D and D/A conversionA/DD/Av(t) vo(t)v*(t)Analog-to-digital converterDigital-to-analog converterttt(n+1)T (n+2)TnTT = sampling period1/T = sampling frequencyv(t)v*(t)vo(t)10ECEN5807 Intro to Converter Sampled-Data ModelingModeling objectives•Relationships: v to v* to vo–Time domain: v(t) to v*(t) to vo(t)–Frequency domain: v(s) to v*(s) to vo(s) ttt(n+1)T (n+2)TnTT = sampling period1/T = sampling frequencyv(t)v*(t)vo(t)11ECEN5807 Intro to Converter Sampled-Data ModelingModelA/DD/Av(t) vo(t)v*(t)Analog-to-digital converterDigital-to-analog converterv(t) vo(t)v*(t)HSampler Zero-order holdT12ECEN5807 Intro to Converter Sampled-Data ModelingSamplingv(t)v*(t)SamplerTttv(t)v*(t)∑+∞∞−−= )()()(* nTttvtv δUnit impulse (Dirac)13ECEN5807 Intro to Converter Sampled-Data Modeling(t)ttarea = 1s(t))()( tts δ→Unit impulse∫+∞∞−=1)( dttδ∫+∞∞−=− )()()(sstvdttttv δProperties∫∞−=tthd )()( ττδunit stepLaplace transform∫+∞∞−−=1)( dtetstδ14ECEN5807 Intro to Converter Sampled-Data ModelingSampling in frequency domain∑+∞∞−−= )()()(* nTttvtv δ∫+∞∞−−= dtetvsvst)(*)(*∑+∞−∞=−=ksjksvTsv )(1)(* ω∫+∞∞−−= dtetvsvst)()(15ECEN5807 Intro to Converter Sampled-Data ModelingSampling in frequency domain: derivation∑∑+∞−∞=+∞∞−=−ktjkkseCnTtωδ )(ssfTππω 22==∑+∞∞−−= )()()(* nTttvtv δ∫+∞∞−−= dtetvsvst)(*)(*TdtenTtTCtjkTTnnks1)(12/2/=⎟⎠⎞⎜⎝⎛−=−−+∞=−∞=∫∑ωδ16ECEN5807 Intro to Converter Sampled-Data ModelingSampling in frequency domain: derivation17ECEN5807 Intro to Converter Sampled-Data ModelingAliasing18ECEN5807 Intro to Converter Sampled-Data ModelingZero-order holdvo(t)v*(t)HZero-order holdtt(n+1)T (n+2)TnTT = sampling period1/T = sampling frequencyv*(t)vo(t)19ECEN5807 Intro to Converter Sampled-Data ModelingZero-order hold: time domainvo(t)HZero-order hold(t)∫−=tTtodtv ττδ )()(20ECEN5807 Intro to Converter Sampled-Data ModelingZero-order hold: frequency domainvo(t)HZero-order holdu(t)∫−=tTtodutv ττ )()(seHsT−−=121ECEN5807 Intro to Converter Sampled-Data ModelingSampled-data system example: frequency domain ∑+∞−∞=−=ksjksvTsv )(1)(* ωv(t) vo(t)v*(t)HSampler Zero-order holdTseHsT−−=1∑+∞−∞=−−−−=−=kssTsTojksvsTesvsesv )(1)(*1)( ω)(1)( svsTesvsTo−−≈sTevvsTo−−=1Consider only low-frequency signals:System “transfer function” =22ECEN5807 Intro to Converter Sampled-Data ModelingZero-order hold: frequency responses2/2/2/2/2/)2/(sinc2/)2/sin(2/121TjTjTjTjTjTjeTeTTTjeeeTjeωωωωωωωωωωω−−−−−==−=−23ECEN5807 Intro to Converter Sampled-Data Modeling102103104105106107-100-80-60-40-20020magnitude [db]Zero-Order Hold magnitude and phase responses102103104105106107-150-100-500frequency [Hz]phase [deg]Zero-order hold: frequency responsessTeTHsT−−=1/fs = 1 MHzMATLAB file: zohfr.m24ECEN5807 Intro to Converter Sampled-Data ModelingZero-order hold: 1st-order approximationpsTssTeω+≈−−111ppsTsseωω+−≈−111st-order Pade approximationππspfTf ==1Tp2=ω25ECEN5807 Intro to Converter Sampled-Data Modeling102103104105106107-100-80-60-40-20020magnitude [db]Zero-Order Hold magnitude and phase responses102103104105106107-150-100-500frequency [Hz]phase [deg]Zero-order hold: frequency responsesfs = 1 MHzMATLAB file: zohfr.m26ECEN5807 Intro to Converter Sampled-Data ModelingHow does any of this apply to converter modeling?+–LC R+v–vg+–D vgVg dI dD ii+_Gcd1VMvrefu27ECEN5807 Intro to Converter Sampled-Data ModelingPWM is a small-signal sampler!ptsTdˆcˆ( )psttTd −δˆuuˆ+ucPWM sampling occurs at tp (i.e. at dTs, periodically, in each switching period)28ECEN5807 Intro to Converter Sampled-Data ModelingGeneral sampled-data modelvref+_Gc(s)uvTsEquivalent holdGh(s)d Tsδ(t − nTs), d = u•Sampled-data model valid at all frequencies•Equivalent hold describes the converter small-signal response to the sampled duty-cycle perturbations [Billy Lau, PESC 1986]•State-space averaging or averaged-switch models are low-frequency continuous-time approximations to this sampled-data model29ECEN5807 Intro to Converter Sampled-Data ModelingApplication to DCM high-frequency modelingTsdTsd2TsiLc30ECEN5807 Intro to Converter Sampled-Data ModelingApplication to DCM high-frequency modelingTsdTsd2TsiLc31ECEN5807 Intro to Converter Sampled-Data ModelingDCM inductor current high-frequency response∑+∞−∞=−−−−+=−+=kssTsDsTsDsLjksdTseTLVVsdseTLVVsiss)(ˆ11)(*ˆ1)(ˆ222121ω)(ˆ1)(ˆ22212sdsTDeTDLVVsisTsDsLs−−+≈222111)(ˆ)(ˆωsTDLVVsdsisL++≈sTD222=ω22Dffsπ=High-frequency pole due to the inductor current dynamics in DCM, see (11.77) in Section 11.332ECEN5807 Intro to Converter Sampled-Data ModelingConclusions•PWM is a small-signal sampler•Switching converter is a sampled-data system•Duty-cycle perturbations act as a string of impulses•Converter response to the duty-cycle perturbations can be modeled as an equivalent hold•Averaged small-signal models are


View Full Document
Download High frequency dynamics of converters operating in DCM
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view High frequency dynamics of converters operating in DCM and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view High frequency dynamics of converters operating in DCM 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?