Unformatted text preview:

1.050: Continuum Strength Models (HW#5) Due: October 10, 2007 MIT – 1.050 (Engineering Mechanics I) Fall 2007 Instructor: Markus J. BUEHLER Team Building and Team Work: We strongly encourage you to form Homework teams of three students. Each team only submits one solution for correction. We expect true team work, i.e. one where everybody contributes equally to the result. This is testified by the team members signing at the end of the team copy a written declaration that "the undersigned have equally contributed to the homework". Ideally, each student will work first individually through the homework set. The team then meets and discusses questions, difficulties and solutions, and eventually, meets with TA or instructor. Important: Specify all resources you use for your solution. The following set of exercises is designed to train you in the use of equilibrium and strength models for continuum systems. For each exercise, show us how you came to your answer and result. We highly encourage you to make drawings where appropriate. 1. Stress state and strength criterion: We consider the next two stress tensors (parameter p > 0), given in a Cartesian system of coordinates of basis(er1,er2,er3): ⎡3 0 0⎤ ⎡0−2 0⎤⎢⎥ ⎢⎥σ= p 0 2 0 ;σ=p−2−3 0 ⎢⎥ ⎢⎥⎢0 0⎥ ⎢⎣−1⎥⎦ ⎣0 0 3⎦ For each stress tensor, obtain: a. The eigenvalues and eigenvectors. b. Display the Mohr circles. c. Find the minimal value of p at which the material fails for a material governed by a Tresca strength criterion of cohesion c = 1. d. Find the two failure planes (in the (er1,er2,er3) basis) and the stress vectors that act on them. e. What is the underlying assumption for the Tresca strength model? f. Answer the same questions (a through d) in the case of a material governed by a Mohr-Coulomb criterion of cohesion c = 1 and of friction angle ϕ=π/5.Due: Wednesday – October 10, 2007 (In class) Page 2 of 5 2. A nano truss: Advances in nanoscience and nanotechnology* now enable us to build structures at molecular scales, with atomistic precision. An important building block of many nanostructures are carbon nanotubes (CNTs), a particularly sturdy form of carbon arranged in a tubular structure. A picture of a CNT is shown below. From a mechanical perspective, CNTs are particularly intriguing as they are one of the strongest and stiffest materials known; yet, they are extremely lightweight. Applications of CNTs range from reinforcement for concrete (to supplement or replace steel reinforcement), polymers to important applications in energy related technologies, such as hydrogen storage for fuel cell applications. Nanoscopic truss structures of CNTs may find applications in ultra-small devices to clean water, to harvest sunlight or to analyze genetic information. This exercise introduces you to the possibility to utilize structural engineering tools typically applied to ‘macroscopic’ objects like bridges, buildings etc. to nanostructured objects. Snapshots of a CNT. It can be envisioned as a rolled up sheet of graphene (graphene denotes a single layer in graphite). Many different types of CNTs (different sizes, multiple nested CNTs like in a Russian Doll…) can be synthesized. Here we consider a truss structure build out of CNT elements. We will consider a particular geometry of a CNT as shown on the next page. Below you will find some relevant information about the material and the geometry of CNTs: • Young’s modulus (a measure of stiffness), E = 2 TPa • Bond strength of a single covalent C-C bond, Pbond= 3 nN • Outside radius of CNT, R0= 8 Å • Area moment of inertia (assuming circular cross-section), πR4I = 4• Critical buckling load for a simply supported column (which we had applied earlier to our truss members), EIπ2Pcrit=L2, where I is the area moment of inertia, and L is the length of the member. * Richard Feynman (Professor at Caltech and Nobel Laureate) is often considered the founding father of nanoscience and nanotechnology. In a famous speech in 1959 he first articulated the possibility of controlling matter at atomistic and molecular scale and utilizing this for technological applications (http://www.rpi.edu/dept/materials/COURSES/NANO/shaw/Page2.htmlFigure by MIT OpenCourseWare.). Over the past decades, many advances have been made in this field, among others, a new form of carbon has been discovered, arranged in a tube-like structure, referred to as ‘carbon nanotubes’. Some of Feynman’s visions have become a reality, while many aspects still remain a research topic. Eric Drexler, an alumnus of MIT, is a pioneer in the implementation of such ideas and was maybe the first ‘nanoengineer’.Due: Wednesday – October 10, 2007 (In class) Page 3 of 5 • Both triangles defined in the nano-truss are isosceles, with side lengths L = 10 nm • Loads applied on the nano-truss, P = 20 nN For this problem, perform the following tasks: a. Compute the axial forces in each member of the nano-truss. b. For the given geometry, material, properties, and loading condition, determine the robustness for each member (hint: consider a range of possible failure modes for each member). Derive all material parameters from the information given above. c. Given the analysis in part (b), what could be a critical condition to be optimized to ensure optimal utilization of the material? Outline several steps towards that goal, e.g. changes of geometry, the structure of the CNT and others. A selection of views of the carbon nano tube (CNT) that is used to build the truss structure. Images generated in Center of Computational Science web application, University of Kentucky, https://www.ccs.uky.edu/~ernst/carbontubes/structure.html (you could use this tool to create your own CNT structures!) Sketch of the nano-truss. All members have the same length. The CNTs are connected by molecular structures that represent frictionless joints.Due: Wednesday – October 10, 2007 (In class) Page 4 of 5 3. Limit Load Below a Circular Foundation: Sketch (b) shows a soil continuum below a circular foundation of radius R, subjected to the foundation load P. We want to evaluate the maximum load the soil substrate can support. Throughout this exercise (parts (a) and (b)), we make the following simplifying assumptions: - All contacts are frictionless. - The weight of the soil is neglected. - We


View Full Document
Download Continuum Strenth Models
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Continuum Strenth Models and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Continuum Strenth Models 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?