Unformatted text preview:

11CSC-2259 Discrete StructuresKonstantin BuschLouisiana State UniversityK. Busch - LSUKaynaklar 16.02.2019 K. Busch - LSU ders notlarından çevirilmiştir2web.ogu.edu.tr/egulbandilar2Topics to be covered• Logic and Proofs• Sets, Functions, Sequences, Sums• Integers, Matrices• Induction, Recursion• Counting• Discrete Probability• GraphsK. Busch - LSU 3Binary Arithmetic4Decimal Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Binary Digits: 0, 1 Numbers: 9, 28, 211, etcNumbers: 1001, 11100, 11010011, etc(also known as bits)K. Busch - LSU35Binary1001918212020210123Decimal9K. Busch - LSU6Binary Addition Binary Multiplication1001 (9)+ 1 1 (3)------1100 (12)1001 (9)x 1 1 (3)------1001+ 1001---------11011 (27)K. Busch - LSU47xyzxyzxzGatesAND ORNOTxyz000010100111ANDBinary Logicxyz000011101111ORxz0110NOTK. Busch - LSU8An arbitrary binary function is implementedwith NOT, AND, and OR gatesyxxxfn),,,(21y1x2x2xnx…NOTANDORK. Busch - LSU59Propositional LogicProposition: a declarative sentence which is either True or FalseExamples:Today is Wednesday (False)Today it Snows (False)1+1 = 2 (True)1+1 = 1 (False)H20 = water (True)K. Busch - LSU10Propositions can be combined usingthe binary operators AND, OR, NOTWe can map to binary values: True = 1False = 0))(()( cbaqp Example:K. Busch - LSU611TrueTrueTrueTrueFalseFalseFalseTrueTrueFalseFalseTruexyyx Implicationx implies y“You get a computer science degree only if you are a computer science major”You get a computer science degree:x:yYou are a computer science majoryx K. Busch - LSU12TrueTrueTrueTrueFalseFalseFalseTrueFalseFalseFalseTruexyyx Bi-conditionalx if and only if y“There is a received phone call if and only if there is a phone ring”:x:yThere is a received phone callThere is a phone ringyx K. Busch - LSU713SetsSet is a collection of elements:Real numbers RIntegers ZEmpty Set Students in this roomK. Busch - LSU14Subset}5,4,3,2,1{}4,2{ Basic Set Operations24135Union}5,4,3,2,1{}5,4,2{}3,2,1{ 24135K. Busch - LSU815Intersection}2{}5,4,2{}3,2,1{ 24135Complement}5,3,2{}4,1{ }5,4,3,2,1{universeK. Busch - LSU16DeMorgan’s LawsBABA BABA K. Busch - LSU917Inclusion-ExclusionABC|CBA| |||||| |||||| ||CBCABACBACBAK. Busch - LSU18PowersetsContains all subsets of a set}}3,2,1{},3,1{},3,2{},2,1{},3{},2{},1{,{Q}3,2,1{A||2||AQ Powerset of AK. Busch - LSU1019CountingSuppose we are given four objects: a, b, c, dHow many ways are there to order the objects?4321!4 a,b,c,db,a,c,da,b,d,cb,a,d,c … and so onK. Busch - LSU20CombinationsGiven a set S with n elementshow many subsets exist with m elements? )!(!!mnmnmnExample:3)!23(!2!323}3,1{},3,2{},2,1{ }3,2,1{SK. Busch - LSU1121Sterling’s Approximationnennn2!K. Busch - LSU22ProbabilitiesWhat is the probability the a dice gives 5?Sample space = {1,2,3,4,5,6}Event set = {5}K. Busch - LSU61space sample of Sizesetevent of Size{5})obability(Pr 1223What is the probability that two dice give the same number?23Sample Space = {{1,1},{1,2},{1,3}, …., {6,5}, {6,6}}Event set = {{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}}K. Busch - LSU366space sample of Sizesetevent of Sizenumber}) {sameobability(Pr 24Randomized AlgorithmsQuicksort(A):If ( |A| == 1)return the one item in AElsep = RandomElement(A)L = elements less than pH = elements higher than pB = Quicksort(L)C = Quicksort(H)return(BC)K. Busch - LSU1325Graph TheoryK. Busch - LSUMiamiAtlantaNew YorkBostonChicagoBaton RougeLas VegasSan FranciscoLos Angeles2000 miles1500 miles1500150010002000700150030080070015001000100080026Shortest Path from Los Angeles to BostonK. Busch - LSUBostonLos Angeles20001500150015001000200070015003008007001500100010008001427Maximum number of edges in a graphwith nodes:22)1()!2(!2!22nnnnnnnClique with five nodes5n10edgesnK. Busch - LSU28Other interesting graphsBipartite GraphTreesK. Busch - LSU1529Recursion)1()(  nfnnf1)1(2)(  nfnfBasis1)1( f1)1( fBasisnnnf  )1(4321)( Sum of arithmetic sequenceSum of geometric sequence)1(321022222)(nnf K. Busch - LSU30nnfnf 22)( )2(1)(  nfnfnf1)1( f1)1(,0)0(  ffFibonacci numbersBasisDivide and conquer algorithms (Quicksort)K. Busch - LSU1631InductionContradictionPigeonhole principleProof TechniquesK. Busch - LSU322)1()(nnnfProof by InductionInduction Basis:2)11(11)1(fInduction Hypothesis:2)1()1(nnnf2)1(22)1()1()(2nnnnnnnnfnnfInduction Step:)1()(  nfnnfProve:K. Busch - LSU1733Proof by Contradiction2is irrationalSupposenm2( and have no common divisor greater than 1 )mn222nmm2is evenm is even2 n2= 4k2n2= 2k2n is evenm=2kContradictionK. Busch -


View Full Document

AUC CSC 2259 - Logic and Proofs

Download Logic and Proofs
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Logic and Proofs and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Logic and Proofs 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?