Unformatted text preview:

Series&Test&&Convergence& &Divergence&1-Divergence&Test&lim$โ†’&๐‘Ž$โ‰ 0!Only!a!test!for!divergence!2-Geometric&Series&|๐‘Ÿ|<1!|๐‘Ÿ|โ‰ฅ1!/๐‘Ž๐‘Ÿ$0=0/๐‘Ž๐‘Ÿ$23&$430=0๐‘Ž10โˆ’0๐‘Ÿ0๐‘–๐‘“0|๐‘Ÿ|<1&$48!3-Integral&Test&9๐‘“(๐‘ฅ)๐‘‘๐‘ฅ0๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘”๐‘’๐‘ &3!9๐‘“(๐‘ฅ)๐‘‘๐‘ฅ0๐‘‘๐‘–๐‘ฃ๐‘’๐‘Ÿ๐‘”๐‘’๐‘ &3!4-p-series&Test&๐‘ > 1!๐‘ โ‰ค 1!series!has!form!โˆ‘3$N&$43!5-Direct&Comparison&Test&๐‘Ž$0โ‰ค0๐‘$!and!โˆ‘๐‘$converges!๐‘Ž$0โ‰ฅ0๐‘$!and!!โˆ‘๐‘$!diverges!original!series!=!โˆ‘ ๐‘Ž$! ;!Comparison!series!=!โˆ‘ ๐‘$!6-Limit&Comparison&Test&lim$โ†’&๐‘Ž$๐‘$0=0๐ฟ0โ‰ 000&0/๐‘$00๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘”๐‘’๐‘ !OR!lim$โ†’&๐‘Ž$๐‘$=00&0/๐‘$00๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘”๐‘’๐‘ !lim$โ†’&๐‘Ž$๐‘$0=0๐ฟ0โ‰ 000&0/๐‘$00๐‘‘๐‘–๐‘ฃ๐‘’๐‘Ÿ๐‘”๐‘’๐‘ !OR!limโ†’&๐‘Ž$๐‘$= โˆž0 orthe limit soesn:t &/๐‘$ 0๐‘‘๐‘–๐‘ฃ๐‘’๐‘Ÿ๐‘”๐‘’๐‘ !your series!=!โˆ‘ ๐‘Ž$! ;!!Comparison!series!=!โˆ‘ ๐‘$!7-Alternating&Series&Test&lim$โ†’&๐‘$=0!and!!๐‘$L3โ‰ค๐‘$00โˆ€๐‘›!โˆ‘๐‘Ž$=โˆ‘(โˆ’1)$๐‘$!;!If!series!is!convergent,!โˆ‘(โˆ’1)$๐‘$=0๐‘ 0 =0๐‘ $0+0๐‘…$!!and!|๐‘…$|โ‰ค๐‘$L3!8-Absolute&Convergence&/|๐‘Ž$|&$480๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘”๐‘’๐‘ !9-Ratio&Test&lim$โ†’&T๐‘Ž$L3๐‘Ž$T=๐ฟ < 1!Then!series!is!absolutely!convergent.!lim$โ†’&T๐‘Ž$L3๐‘Ž$T=๐ฟ > 1!lim$โ†’&Tthe test is not useful if!๐‘Ž$L3๐‘Ž$T=๐ฟ = 1!10-Root&Test&lim$โ†’&U|๐‘Ž$|V=๐ฟ < 1!Then!series!is!absolutely!convergent.!lim$โ†’&U|๐‘Ž$|V=๐ฟ > 1! the test is not useful if lim$โ†’&U|๐‘Ž$|V=๐ฟ = 1!Interval&of&Convergence&for&a&Power&Series&โˆ‘๐’‚๐’&๐’4๐ŸŽ=0โˆ‘๐’„๐’(๐’™โˆ’๐’‚)๐’&๐’4๐ŸŽ&Use!Ratio!Test!or!Root!Test!and!force!convergence.!โ€ข If! lim$โ†’&\]V^_]V\=00,๐‘กโ„Ž๐‘’๐‘›00 < 10โˆ€๐‘ฅ!!Then!๐‘… =โˆž00๐‘Ž๐‘›๐‘‘0๐ผ๐‘›๐‘ก๐‘’๐‘Ÿ๐‘ฃ๐‘Ž๐‘™0๐‘œ๐‘“0๐ถ๐‘œ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘”๐‘’๐‘›๐‘๐‘’0 =0(โˆ’โˆž,โˆž)!โ€ข If!lim$โ†’&\]V^_]V\=0โˆž, ๐‘กโ„Ž๐‘’๐‘›0โˆžโ‰ฎ10๐‘“๐‘œ๐‘Ÿ0๐‘Ž๐‘›๐‘ฆ00๐‘ฅ.!Then!๐‘… = 00๐‘Ž๐‘›๐‘‘0๐ผ๐‘›๐‘ก๐‘’๐‘Ÿ๐‘ฃ๐‘Ž๐‘™0๐‘œ๐‘“0๐ถ๐‘œ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘”๐‘’๐‘›๐‘๐‘’0๐‘–๐‘ 0๐‘—๐‘ข๐‘ ๐‘ก0๐‘ฅ0 =0๐‘Ž.!โ€ขlim$โ†’&\]V^_]V\=0๐‘|๐‘ฅโˆ’๐‘Ž|, ๐‘กโ„Ž๐‘’๐‘›0๐‘“๐‘œ๐‘Ÿ๐‘๐‘’0๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘”๐‘’๐‘›๐‘๐‘’0๐‘Ž๐‘›๐‘‘0๐‘ ๐‘œ๐‘™๐‘ฃ๐‘’0๐‘œ๐‘Ÿ0๐‘–๐‘ ๐‘œ๐‘™๐‘Ž๐‘ก๐‘’0|๐‘ฅโˆ’๐‘Ž|0๐‘ก๐‘œ0๐‘”๐‘’๐‘ก0๐‘….!olim$โ†’&\]V^_]V\=0๐‘|๐‘ฅโˆ’๐‘Ž|<1,000|๐‘ฅโˆ’๐‘Ž|<3k0=0๐‘…o Initial!Interval!of!Conv e r ge n c e !is!|๐‘ฅโˆ’๐‘Ž|<๐‘…, ๐‘œ๐‘Ÿ0โˆ’๐‘… < ๐‘ฅโˆ’๐‘Ž <๐‘…, ๐‘คโ„Ž๐‘–๐‘โ„Ž0๐‘Ÿ๐‘’๐‘‘๐‘ข๐‘๐‘’๐‘ 0๐‘ก๐‘œ0๐‘Žโˆ’๐‘… < ๐‘ฅ < ๐‘Ž+๐‘…o Use!series!tests!to!test!the!end!points!of!this!interval!for!convergence.!Include!endpoin ts!th a t!co n v e r g e ,!an d !exclude!the!endpoints!that!diverge!in!the!Final!Interval!of!Convergence. is continuous , positive and decreasing on any value greater than or equal 1.with positive terms with positive termswith positive termspositive termsA series โˆ‘ ๐’‚๐’ is called conditionally convergent ifโˆ‘ ๐’‚๐’ converges but โˆ‘|๐’‚๐’| diverges.Differentiation&and&Integration&of&Power&Series&If!the!power!ser ie s!โˆ‘๐‘$(๐‘ฅโˆ’๐‘Ž)$0has!a!radius!of!convergence!๐‘… > 0,!then!the!function!๐‘“(๐‘ฅ)!defined!by!๐‘“(๐‘ฅ)0=0๐‘8+0๐‘3(๐‘ฅโˆ’๐‘Ž)+๐‘m(๐‘ฅโˆ’๐‘Ž)m+...= /๐‘$(๐‘ฅโˆ’๐‘Ž)$&$48!is!differentiable!on!the!interva l!(๐‘Žโˆ’๐‘…,๐‘Ž+๐‘…)!and!(1) ๐‘“n(๐‘ฅ)0=0โˆ‘๐‘›๐‘$(๐‘ฅโˆ’๐‘Ž)$23&$43(2)โˆซ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ = ๐ถ+โˆ‘๐‘$(o2])V^_$L3&$48The!radii!of!convergence!of!the!power!series!in!(1)!and!(2)!are!both!R.!!Maclaurin&Series&Radius&of&Convergence&11โˆ’๐‘ฅ=/๐‘ฅ$&$480=010+0๐‘ฅ0+0๐‘ฅm+0๐‘ฅp+...!๐‘… =1!๐‘’o=0/๐‘ฅ$๐‘›!&$480=01+๐‘ฅ1!+๐‘ฅm2!+๐‘ฅp3!+...!๐‘… =โˆž!๐‘ ๐‘–๐‘›๐‘ฅ0 =0/(โˆ’1)$๐‘ฅm$L3(2๐‘›+1)!&$48=0๐‘ฅโˆ’๐‘ฅp3!+๐‘ฅt5!โˆ’๐‘ฅv7!+...!๐‘… =โˆž!๐‘๐‘œ๐‘ ๐‘ฅ0 =0/(โˆ’1)$๐‘ฅm$(2๐‘›)!&$48=01โˆ’๐‘ฅm2!+๐‘ฅx4!โˆ’๐‘ฅz6!+...!๐‘… =โˆž!๐‘ก๐‘Ž๐‘›23๐‘ฅ0 =0/(โˆ’1)$๐‘ฅm$L3(2๐‘›+1)&$48=0๐‘ฅโˆ’๐‘ฅp3+๐‘ฅt5โˆ’๐‘ฅv7+...!๐‘… =1!๐‘™๐‘›(1+๐‘ฅ) =0/(โˆ’1)$23๐‘ฅ$๐‘›&$43=0๐‘ฅโˆ’๐‘ฅm2+๐‘ฅp3โˆ’๐‘ฅx4+...!๐‘… =1!(1+๐‘ฅ)|=0โˆ‘}๐‘˜๐‘›โ€ข๐‘ฅ$=01+๐‘˜๐‘ฅ+|(|23)m!&$48๐‘ฅm+|(|23)(|2m)p!๐‘ฅp+...!๐‘… =1!If!๐‘“(๐‘ฅ)!has!a!power!series!representation!(expansion)!at!๐‘Ž,!that!is,!if!๐‘“(๐‘ฅ)0=0/๐‘$(๐‘ฅโˆ’๐‘Ž)$&$4800000000|๐‘ฅโˆ’๐‘Ž|<๐‘…!then!its!coefficients!a re !g iv e n !by !th e !for mula!๐‘$=0๐‘“($)(๐‘Ž)๐‘›!The!nth!degree!Taylor!polynomial!of!๐‘“(๐‘ฅ)0๐‘Ž๐‘ก0๐‘Ž!(or!order!n!centered!at!a):!๐‘‡$(๐‘ฅ)0=0๐‘8+๐‘3(๐‘ฅโˆ’๐‘Ž)0+๐‘m(๐‘ฅโˆ’๐‘Ž)m+...+๐‘$(๐‘ฅโˆ’๐‘Ž)$!!where!0๐‘$=0๐‘“($)(๐‘Ž)๐‘›!Taylor's!Inequality!If!โ€ข๐‘“($L3)(๐‘ฅ)โ€ขโ‰ค๐‘€0๐‘“๐‘œ๐‘Ÿ0|๐‘ฅโˆ’๐‘Ž|โ‰ค๐‘‘!!then!the!remainder!๐‘…$(๐‘ฅ)!of!the!Taylor!series!satisfies!the!inequality!|๐‘…$(๐‘ฅ)|โ‰คฦ’($L3)!|๐‘ฅโˆ’๐‘Ž|$L3!!for!|๐‘ฅโˆ’๐‘Ž|โ‰ค๐‘‘!๐‘“(๐‘ฅ)0=0๐‘‡$(๐‘ฅ)+๐‘…$(๐‘ฅ)!!!If! lim$โ†’&๐‘…$(๐‘ฅ) 0 = 000๐‘“๐‘œ๐‘Ÿ0|๐‘ฅ โˆ’ ๐‘Ž| < ๐‘…!then!f(x)!is!equal!to!the!sum!of!its Taylor!series.!on!|๐‘ฅ โˆ’ ๐‘Ž| <


View Full Document

UIUC MATH 231 - Ch-11 Review

Download Ch-11 Review
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Ch-11 Review and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Ch-11 Review 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?