CCD BIO 208 - The fitness of the Aqueous Environment for Living Organisms

Unformatted text preview:

2.5 – The fitness of the Aqueous Environment for Living Organisms Organisms have effectively adapted to their aqueous environment and, in the course of evolution, have developed means of exploiting the unusual properties of water. The high specific heat of water (the heat energy required to raise the temperature of 1 g of water by 1 °C) is useful to cells and organisms because it allows water to act as a “heat buffer,” keeping the temperature of an organism relatively constant as the temperature of the surroundings fluctuates and as heat is generated as a byproduct of metabolism. Furthermore, some vertebrates exploit the high heat of vaporization of water (Table 2-1) by using (thus losing) excess body heat to evaporate sweat. The high degree of internal cohesion of liquid water, due to hydrogen bonding, is exploited by plants as a means of transporting dissolved nutrients from the roots to the leaves during the process of transpiration. Even the density of ice, lower than that of liquid water, has important biological consequences in the life cycles of aquatic organisms. Ponds freeze from the top down, and the layer of ice at the top insulates the water below from frigid air, preventing the pond (and the organisms in it) from freezing solid. Most fundamental to all living organisms is the fact that many physical and biological properties of cell macromolecules, particularly the proteins and nucleic acids, derive from their interactions with water molecules in the surrounding medium. The influence of water on the course of biological evolution has been profound and determinative. If life forms have evolved elsewhere in the universe, they are unlikely to resemble those of Earth unless liquid water is plentiful in their planet of origin. Science is both a way of thinking about the natural world and the sum of the information and theory that result from such thinking. The power and success of science flow directly from its reliance on ideas that can be tested: information on natural phenomena that can be observed, measured, and reproduced and theories that have predictive value. The progress of science rests on a foundational assumption that is often unstated but crucial to the enterprise: that the laws governing forces and phenomena existing in the universe are not subject to change. The Nobel laureate Jacques Monod referred to this underlying assumptionas the “postulate of objectivity.” The natural world can therefore be understood by applying a process of inquiry— the scientific method. Science could not succeed in a universe that played tricks on us. Other than the postulate of objectivity, science makes no inviolate assumptions about the natural world. A useful scientific idea is one that (1) has been or can be reproducibly substantiated, (2) can be used to accurately predict new phenomena, and (3) focuses on the natural world or universe. Scientific ideas take many forms. The terms that scientists use to describe these forms have meanings quite different from those applied by nonscientists. A hypothesis is an idea or assumption that provides a reasonable and testable explanation for one or more observations, but it may lack extensive experimental substantiation. A scientific theory is much more than a hunch. It is an idea that has been substantiated to some extent and provides an explanation for a body of experimental observations. A theory can be tested andbuilt upon and is thus a basis for further advance and innovation. When a scientific theory has been repeatedly tested and validated on many fronts, it can be accepted as a fact.In one important sense, what constitutes science or a scientific idea is defined by whether ornot it is published in the scientific literature after peer review by other working scientists. As of late 2014, about 34,500 peer- reviewed scientific journals worldwide were publishing some 2.5 million articles each year, a continuing rich harvest of information that is the birthright of every human being. Scientists are individuals who rigorously apply the scientific method to understand the natural world. Merely having an advanced degree in a scientific discipline does not make onea scientist, nor does the lack of such a degree prevent one from making important scientific contributions. A scientist must be willing to challenge any idea when new findings demand it. The ideas that a scientist accepts must be based on measurable, reproducible observations, and the scientist must report these observations with complete honesty. The scientific method is a collection of paths, all of which may lead to scientific discovery. In the hypothesis and experiment path, a scientist poses a hypothesis, then subjects it to experimental test. Many of the processes that biochemists work with every day were discovered in this manner. The DNA structure elucidated by James Watson and Francis Crick led to the hypothesis that base pairing is the basis for information transfer in polynucleotide synthesis. This hypothesis helped inspire the discovery of DNA and RNA polymerases. Watson and Crick produced their DNA structure through a process of model building and calculation. No actual experiments were involved, although the model building and calculations used data collected by other scientists. Many adventurous scientists have applied the process of exploration and observation as a path to discovery. Historical voyagesof discovery (Charles Darwin’s 1831 voyage on H.M.S. Beagle among them) helped to map the planet, catalog its living occupants, and change the way we view the world. Modern scientists follow a similar path when they explore the ocean depths or launch probes to other planets. An analog of hypothesis and experiment is hypothesis and deduction. Crick reasoned that there must be an adaptor molecule that facilitated translation of the information in messenger RNA into protein. This adaptor hypothesis led to the discovery of transfer RNA byMahlon Hoagland and Paul Zamecnik. Not all paths to discovery involve planning. Serendipity often plays a role. The discovery of penicillin by Alexander Fleming in 1928 and of RNA catalysts by Thomas Cech in the early 1980s were both chance discoveries, albeit by scientists well prepared to exploit them. Inspiration can also lead to important advances. The polymerase chain reaction (PCR), now acentral part of biotechnology, was developed by Kary Mullis after a flash of inspiration duringa road trip in northern


View Full Document

CCD BIO 208 - The fitness of the Aqueous Environment for Living Organisms

Download The fitness of the Aqueous Environment for Living Organisms
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view The fitness of the Aqueous Environment for Living Organisms and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view The fitness of the Aqueous Environment for Living Organisms 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?