UCF EGN 3420 - Engineering Analysis (10 pages)

Previewing pages 1, 2, 3 of 10 page document View the full content.
View Full Document

Engineering Analysis



Previewing pages 1, 2, 3 of actual document.

View the full content.
View Full Document
View Full Document

Engineering Analysis

81 views


Pages:
10
School:
University of Central Florida
Course:
Egn 3420 - Engineering Analysis

Unformatted text preview:

Engineering Analysis ENG 3420 Fall 2009 Dan C Marinescu Office HEC 439 B Office hours Tu Th 11 00 12 00 Lecture 14 Last time Solving systems of linear equations Chapter 9 Graphical methods Cramer s rule Gauss elimination Today Discussion of pivoting Tri diagonal system solver Examples Next Time LU Factorization Chapter 10 Lecture 14 2 function x GaussNaive A b ExA A b m n size A q size b if m n fprintf Error input matrix is not square n 3 0f m 3 0f n n m End if n q fprintf Error vector b has a different dimension than n q 2 0f n q end n1 n 1 for k 1 n 1 for i k 1 n factor ExA i k ExA k k ExA i k n1 ExA i k n1 factor ExA k k n1 End End x zeros n 1 x n ExA n n1 ExA n n for i n 1 1 1 x i ExA i n1 ExA i i 1 n x i 1 n ExA i i end A 1 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 10 10 0 15 5 5 10 0 20 0 0 A 1 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 10 10 0 15 5 5 10 0 20 0 0 b 0 0 0 0 0 200 b b b 0 0 0 0 0 200 x GaussNaive A b x NaN NaN NaN NaN NaN NaN Pivoting If a coefficient along the diagonal is 0 problem division by 0 or close to 0 problem round off error then the Gauss elimination causes problems Partial pivoting determine the coefficient with the largest absolute value in the column below the pivot element The rows can then be switched so that the largest element is the pivot element Complete pivoting check also the rows to the right of the pivot element are also checked and switch columns function x GaussPartialPivot A b ExtendedA A b m n size A q size b if m n fprintf Error input matrix is not square n 3 0f m 3 0f n n m End if n q fprintf Error vector b has a different dimension than n q 2 0f n q end n1 n 1 for k 1 n 1 largest i max abs ExtendedA k n k nrow i k 1 if nrow k ExtendedA k nrow ExtendedA nrow k end end for k 1 n 1 for i k 1 n factor ExtendedA i k ExtendedA k k ExtendedA i k n1 ExtendedA i k n1 factor ExtendedA k k n1 End End x zeros n 1 x n ExtendedA n n1 ExtendedA n n for i n 1 1 1 x i ExtendedA i



View Full Document

Access the best Study Guides, Lecture Notes and Practice Exams

Loading Unlocking...
Login

Join to view Engineering Analysis and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Engineering Analysis and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?