DOC PREVIEW
Purdue MA 26100 - MA261PracticeProblems

This preview shows page 1-2-3 out of 8 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 8 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 8 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 8 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 8 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MA 261 PRACTICE PROBLEMS1. If the line ` has symme tric equationsx¡12=y¡3=z+27,¯nd a ve ctor equation for the line `0that contains the poin t (2; 1; ¡3) and is parallel to `.A. ~r =(1+2t)~i ¡ 3t~j +(¡2+7t)~k B. ~r =(2+t)~i ¡ 3~j +(7¡ 2t)~kC. ~r =(2+2t)~i +(1¡ 3t)~j +(¡3+7t)~k D. ~r =(2+2t)~i +(¡3+t)~j +(7¡ 3t)~kE. ~r =(2+t)~i +~j +(7¡ 3t)~k2. Find parametric equations of the line containing the points (1; ¡1; 0) and (¡2; 3; 5).A. x =1¡ 3t; y = ¡1+4t; z =5t B. x = t; y = ¡t; z =0C. x =1¡ 2t; y = ¡1+3t; z =5t D. x = ¡2t; y =3t; z =5tE. x = ¡1+t; y =2¡ t; z =53. Find an equation of the plane that contains the point (1; ¡1; ¡1) and has normal vector12~i +2~j +3~k.A. x ¡ y ¡ z +92=0 B. x +4y +6z +9=0 C.x¡112=y+12=z+13D. x ¡ y ¡ z =0 E.12x +2y +3z =14. Find an equation of the plane that contains the points (1; 0; ¡1), (¡5; 3; 2), and (2; ¡1; 4).A. 6x ¡ 11y + z =5 B. 6x +11y + z =5 C. 11x ¡ 6y + z =0D. ~r =18~i ¡ 33~j +3~k E. x ¡ 6y ¡11z =125. Find parametric equations of the line tangent to the curve ~r(t)=t~i + t2~j + t3~k at the point (2; 4; 8)A. x =2+t; y =4+4t; z =8+12t B. x =1+2t; y =4+4t; z =12+8tC. x =2t; y =4t; z =8t D. x = t; y =4t; z =12t E. x =2+t; y =4+2t; z =8+3t6. The position function of an object is~r(t)=cost~i +3sint~j ¡ t2~kFind the velocity, acceleration, and speed of the object when t = ¼.Velocity Acceleration SpeedA. ¡~i ¡ ¼2~k ¡3~j ¡ 2¼~kp1+¼4B.~i ¡ 3~j +2¼~k ¡~i ¡ 2~kp10 + 4¼2C. 3~j ¡ 2¼~k ¡~i ¡ 2~kp9+4¼2D. ¡3~j ¡ 2¼~k~i ¡ 2~kp9+4¼2E.~i ¡ 2~k ¡3~j ¡ 2¼~kp517. A smooth parametrization of the semicircle which passes through the point s (1; 0; 5), (0; 1; 5) and(¡1; 0; 5) isA. ~r(t)=sint~i +cost~j +5~k; 0 · t · ¼ B. ~r(t)=cost~i +sint~j +5~k; 0 · t · ¼C. ~r(t)=cost~i +sint~j +5~k;¼2· t ·3¼2D. ~r(t)=cost~i +sint~j +5~k; 0 · t ·¼2E. ~r(t)=sint +cost~j +5~k;¼2· t ·3¼28. The length of the curve ~r(t)=23(1 + t)32~i +23(1 ¡ t)32~j + t~k, ¡1 · t · 1isA.p3B.p2C.12p3D.2p3E.p29. The level curves of the function f(x; y)=p1 ¡ x2¡ 2y2areA. circles B. lines C. parabolas D. hyperbolas E. ellipses10. The level surface of the function f(x; y; z)=z¡x2¡y2that passes through the point (1; 2; ¡3) intersectsthe (x; z)-plane (y =0)alongthecurveA. z = x2+8 B. z = x2¡ 8C.z = x2+5 D. z = ¡x2¡ 8E. does not in tersect the (x; z)-plane11. Matc h the graphs of the equations with their names:(1) x2+ y2+ z2= 4 (a) paraboloid(2) x2+ z2= 4 (b) sphere(3) x2+ y2= z2(c) cylinder(4) x2+ y2= z (d) double cone(5) x2+2y2+3z2= 1 (e) ellipsoidA. 1b, 2c, 3d, 4a, 5e B. 1b, 2c, 3a, 4d, 5e C. 1e, 2c, 3d, 4a, 5bD. 1b, 2d, 3a, 4c, 5e E. 1d, 2a, 3b, 4e, 5c12. Suppose that w = u2=v where u = g1(t)andv = g2(t) are di®eren tiable functions of t.Ifg1(1) = 3,g2(1) = 2, g01(1) = 5 and g02(1) = ¡4, ¯nddwdtwhen t =1.A. 6 B. 33=2C.¡24 D. 33 E. 2413. If w = euvand u = r + s, v = rs, ¯nd@[email protected]. e(r+s)rs(2rs + r2)B.e(r+s)rs(2rs + s2)C.e(r+s)rs(2rs + r2)D. e(r+s)rs(1 + s)E.e(r+s)rs(r + s2).214. If f(x; y)=cos(xy),@2f@x@y=A. ¡xy cos(xy)B.¡xy cos(xy) ¡ sin(xy)C.¡sin(xy)D. xy cos(xy)+sin(xy)E.¡cos(xy)15. Assuming that the equation xy2+3z =cos(z2)de¯nesz implicitly as a function of x and y,¯nd@[email protected]¡sin(z2)B.¡y23+sin(z2)C.y23+2z sin(z2)D.¡y23+2z sin(z2)E.¡y23¡2z sin(z2)16. If f(x; y)=xy2,thenrf(2; 3) =A. 12~i +9~j B. 18~i +18~j C. 9~i +12~j D. 21 E.p2.17. Find the directional derivative of f(x; y)=5¡ 4x2¡ 3y at (x; y) towards the originA. ¡8x ¡ 3B.¡8x2¡3ypx2+y2C.¡8x¡3p64x2+9D. 8x2+3y E.8x2+3ypx2+y2.18. For the function f (x; y)=x2y, ¯nd a unit vector ~u for which the directional derivative D~uf(2; 3) iszero.A.~i +3~j B.i+3~jp10C.~i ¡ 3~j D.i¡3~jp10E.3~i¡~jp10.19. Find a vector pointing in the direction in which f(x; y; z)=3xy ¡ 9xz2+ y increases most rapidly atthe point (1; 1; 0).A. 3~i +4~j B.~i +~j C. 4~i ¡ 3~j D. 2~i +~k E. ¡~i +~j.20. Find a vector that is normal to the graph of the equation 2 cos(¼xy )=1atthepoint(16; 2).A. 6~i +~j B. ¡p3~i ¡~j C. 12~i +~j D.~j E. 12~i ¡~j.21. Find an equation of the tangent plane to the surface x2+2y2+3z2= 6 at the point (1; 1; ¡1).A. ¡x +2y +3z =2 B. 2x +4y ¡6z =6 C. x ¡ 2y +3z = ¡4D. 2x +4y ¡6z =0 E. x +2y ¡ 3z =6.22. Find an equation of the plane tangent to the graph of f (x; y)=¼ +sin(¼x2+2y)when(x; y)=(2;¼).A. 4¼x +2y ¡z =9¼ B. 4x +2¼y ¡ z =10¼ C. 4¼x +2¼y + z =10¼D. 4x +2¼y ¡ z =9¼ E. 4¼x +2y + z =9¼.323. The di®erential df of the function f(x; y; z)=xey2¡z2isA. df = xey2¡z2dx + xey2¡z2dy + xey2¡z2dzB. df = xey2¡z2dx dy dzC. df = ey2¡z2dx ¡ 2xyey2¡z2dy +2xzey2¡z2dzD. df = ey2¡z2dx +2xyey2¡z2dy ¡ 2xzey2¡z2dzE. df = ey2¡z2(1 + 2xy ¡ 2xz)24. The function f(x; y)=2x3¡ 6xy ¡ 3y2hasA. a relative minimum and a saddle point B. a relative maximum and a saddle pointC. a relative minimum and a relative maximum D. two saddle pointsE. two relative minima.25. Consider the problem of ¯nding the minim u m value of the function f (x; y)=4x2+ y2on the curvexy = 1. In using the method of Lagrange multipliers, the value of ¸ (ev en though it is not needed) willbeA. 2 B. ¡2C.p2D.1p2E. 4.26. Evaluate the iterated integralR31Rx01xdydx.A. ¡89B.2C.ln3D.0E.ln2.27. Consider the double integral,RRRf(x; y)dA,whereR is the portion of the disk x2+y2· 1, in the upperhalf-plane, y ¸ 0. Express the integral as an iterated integral.A.R1¡1Rp1¡x2¡p1¡x2f(x; y)dydx B.R0¡1Rp1¡x20f(x; y)dydxC.R1¡1Rp1¡x20f(x; y)dydx D.R10Rp1¡x2¡p1¡x2f(x; y)dydxE.R10Rp1¡x20f(x; y)dydx.28. Find a and b for the correct interchange of order of integration:R20R2xx2f(x; y)dydx =R40Rbaf(x; y)dxdy.A. a = y2;b=2y B. a =y2;b=py C. a =y2;b= yD. a =py;b =y2E. cannot be done without explicit knowledge of f(x; y).29. Evaluate the double integralRRRydA,whereR is the region of the (x; y)-plane inside the triangle withvertices (0; 0), (2; 0) and (2; 1).A. 2 B.83C.23D. 1 E.13.30. The volume of the solid region in the ¯rst octant bounded above by the parabolic sheet z =1¡ x2,below by the xy plane, and on the sides by the planes y =0andy = x is given by the double in tegralA.R10Rx0(1 ¡ x2)dydx B.R10R1¡x20xdydx C.R1¡1Rx¡x(1 ¡ x2)dydxD.R10R0x(1 ¡ x2)dydx E.R10R1¡x2xdydx.431. The area of one leaf of the three-leaved rose bounded by the graph of r =5sin3µ isA.5¼6B.25¼12C.25¼6D.5¼3E.25¼3.32. Find the area of the portion of the plane x +3y +2z = 6 that lies in the ¯rst octant.A. 3p11 B. 6p7C.6p14 D. 3p14 E. 6p11.33. A solid region in the ¯rst octant is bounded


View Full Document

Purdue MA 26100 - MA261PracticeProblems

Download MA261PracticeProblems
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view MA261PracticeProblems and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view MA261PracticeProblems 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?