DOC PREVIEW
Observing inner discs where planets form

This preview shows page 1-2-3-24-25-26 out of 26 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Observing inner discs where planets formFrom discs to planets: New observations, models, and theoriesPasadena, California, USARégis Lachaume1, Fabien Malbet2, & Jean-Louis Monin21Max-Planck-Institut für Radioastronomie2Laboratoire d’Astrophysique de GrenobleMarch 8th 2005IntroductionScales in protoplanetary discs0.10.00110.01100.11001AU’’distance to the star@ TaurusKuchner 2004, ApJ 612, 1147Earth Plutoopticalradiogiant planet formationlarge column density:→ Optical interferometry & radiative transferScales in protoplanetary discs0.10.00110.01100.11001AU’’distance to the star@ Taurus1001000 101000 100 m (N band)m (K band)baseline lengthEarth Plutoopticalradio→ Optical interferometry & radiative transferBut visibilities are are not enough! (1)Irradiated & visous disc model for T Tauri: visibility fit.Lachaume, Malbet, & Monin 2003, A&A 379, 515 0 50 100 1500.00.51.0 B (m)|V2| (norm.)˙M = 8.0 × 10−7M/yr rmin= 18.0 R→ Combine observables, e.g. SED + visibilitiesBut visibilities are are not enough! (1)Irradiated & visous disc model for T Tauri: visibility fit.Lachaume, Malbet, & Monin 2003, A&A 379, 515 0 50 100 1500.00.51.0 B (m)|V2| (norm.)1.0 10.0 100.010−1310−1210−11 λ (µm)λFλ (W.m−2)˙M = 8.0 × 10−7M/yr rmin= 18.0 R→ Combine observables, e.g. SED + visibilitiesBut visibilities are are not enough! (2)The large-scale diffuse emission problemLachaume, 2003, A&A 400, 795diffuse emissioncompact objectvisibilitybaselinewrong diameter→ Adaptive optics & speckle interferometryBut visibilities are are not enough! (2)The large-scale diffuse emission problemLachaume, 2003, A&A 400, 795diffuse emissioncompact objectvisibilitybaselinewrong diameter→ Adaptive optics & speckle interferometryAd hoc modellingAMBER observation of MWC 297Herbig Be starResolved in K, Tatulli 2005, Ph.D. thesis 2.14 2.16 2.180.00.51.0 2 4 6 8Wavelength (micron)VisibiliyFlux (kADU/ch/s)continuum Br γdiscenvelopeØdisc= 5.8 ± 0.6 mas → 2.6 ± 0.3 AUØenv= 10.6 ± 0.8 mas → 4.8 ± 0.4 AUAMBER observation of MWC 297Herbig Be starResolved in K, Tatulli 2005, Ph.D. thesis 2.14 2.16 2.180.00.51.0 2 4 6 8Wavelength (micron)VisibiliyFlux (kADU/ch/s)continuum Br γdiscenvelopeØdisc= 5.8 ± 0.6 mas → 2.6 ± 0.3 AUØenv= 10.6 ± 0.8 mas → 4.8 ± 0.4 AUPTI, IOTA, & VLTI observation of FU Ori (1)FU Ori: YSO with accretion outburstMarginally resolved in H & K, Malbet et al. 2005, submitted−100 0 100−100 0 100−100 0 100 IOTA/S15N15IOTA/S15N35PTI/NSPTI/NWPTI/SWVLTI/U1−U3λ = 1.63 µm λ = 2.15 µmu (m)v (m)1.0 10.010−1310−1210−1110−10 λ (µm)λ Fλ (W m−2)IOTA/S15N15IOTA/S15N35PTI/NSPTI/NWPTI/SWVLTI/U1−U3 0 50 1000.00.51.0 0 50 100 λ = 1.63 µm λ = 2.15 µmB (m)|V|2˙M = (6.1 ± 2.5)× 10−5M/yri = 55 ± 7oθ = 47 ± 10ormin= 5.5 ± 2.5 RPTI, IOTA, & VLTI observation of FU Ori (1)FU Ori: YSO with accretion outburstMarginally resolved in H & K, Malbet et al. 2005, submitted−100 0 100−100 0 100−100 0 100 IOTA/S15N15IOTA/S15N35PTI/NSPTI/NWPTI/SWVLTI/U1−U3λ = 1.63 µm λ = 2.15 µmu (m)v (m)1.0 10.010−1310−1210−1110−10 λ (µm)λ Fλ (W m−2)IOTA/S15N15IOTA/S15N35PTI/NSPTI/NWPTI/SWVLTI/U1−U3 0 50 1000.00.51.0 0 50 100 λ = 1.63 µm λ = 2.15 µmB (m)|V|2˙M = (6.1 ± 2.5)× 10−5M/yri = 55 ± 7oθ = 47 ± 10ormin= 5.5 ± 2.5 RPTI, IOTA, & VLTI observation of FU Ori (2)FU Ori: hot spot in the disc?0.60.81.01.2−4 −2 0 2 40.60.81.01.2−4 −2 0 2 4 PTI/NSPTI/NWλ = 1.63 µm λ = 2.15 µmhour angle (hr)|V|2∆K = 4.2 ± 1.1 magrspot= 10.1 ± 0.4 AUθspot= 130 ± 1oEN−10 0 10−10 0 10 λ = 2.19 µmα offset (AU)δ offset (AU)PTI, IOTA, & VLTI observation of FU Ori (2)FU Ori: hot spot in the disc?0.60.81.01.2−4 −2 0 2 40.60.81.01.2−4 −2 0 2 4 PTI/NSPTI/NWλ = 1.63 µm λ = 2.15 µmhour angle (hr)|V|2∆K = 4.2 ± 1.1 magrspot= 10.1 ± 0.4 AUθspot= 130 ± 1oEN−10 0 10−10 0 10 λ = 2.19 µmα offset (AU)δ offset (AU)MIDI observation of Hen 3 1191 (1)B[e] star: either YSO or proto-PN.Resolved in N, Lachaume et al. 2005, in prep 8 10 120.00.51.0 B = 41.2 m θ = 54 oB = 45.6 m θ = 33 oB = 46.3 m θ = 22 oλ (µm)|V|staractive discinner rimMIDI observation of Hen 3 1191 (1)B[e] star: either YSO or proto-PN.Resolved in N, Lachaume et al. 2005, in prep 8 10 120.00.51.0 B = 41.2 m θ = 54 oB = 45.6 m θ = 33 oB = 46.3 m θ = 22 oλ (µm)|V|staractive discinner rimMIDI observation of Hen 3 1191 (2) 8 10 12 0 10 20 30 40 λ (µm)θud (mas)λ (µm)θud (mas)λ (µm)θud (mas)λ (µm)θud (mas)1.0 10.0 100.0 1000.10−1410−1310−1210−11 λ (µm)λ Fλ (W/m2)star = B1.5 star˙M/M?= 1.5 × 10−3yr−1!rrim= 30 AU (Trim= 1000 K)Radiative transfer modellingUsing two-layer disc modelsGeneralised Chiang & Goldreich (1997) two-layer models.τiτeτTeTiopticalviscous heatingIR/sub mmheating by the starISimple implementationIAnalytical dependenciesUsing two-layer disc modelsGeneralised Chiang & Goldreich (1997) two-layer models.τiτeτoptical IR/sub mmviscous heatingbackwarmingISimple implementationIAnalytical dependenciesPTI observation of SU AurIrradiation by the star and accretionLachaume et al. 2003, A&A 400, 795 0 50 100 1500.00.51.0 B (m)|V2| (norm.)1.0 10.0 100.0 1000.10−1410−1310−1210−11 (µm)λFλ (W.m−2)star = G2 star˙M = 2–10 × 10−8M/yrThe mid-IR SED of FU Ori starsBackwarming of the disc and accretionLachaume 2004, A&A, 422, 171backwarmingstellar heating10−610−510−410−1410−1310−1210−1110−10 λ (m)λFλ (W.m−2)V1057 Cyg550 pcH/r (10 AU) = 0.35V1057 Cyg550 pcH/r (10 AU) = 0.35backwarmingstellar heating10−610−510−410−1410−1310−1210−1110−10 λ (m)λFλ (W.m−2)V1515 Cyg1000 pcH/r (10 AU) = 0.35V1515 Cyg1000 pcH/r (10 AU) = 0.35→ N-band interferometryConclusionMain pointsIIn absence of image reconstruction, be careful:Icount with extended contribution;Icombine with other observables.Still new constraints on the physics of the first AUsIForthcoming large data sets with the VLTI needI“toy models” for a first interpretation;Inew, detailed simulationsIAccretion and irradiation often occur together,which no current model self-consistently describes.IOptically thick inner parts are not directly seen,though their physics condition planet formation.Main pointsIIn absence of image reconstruction, be careful:Icount with extended


Observing inner discs where planets form

Download Observing inner discs where planets form
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Observing inner discs where planets form and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Observing inner discs where planets form 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?