DOC PREVIEW
WUSTL MATH 217 - M217F00ES2R6

This preview shows page 1-2-3-4-5-6 out of 18 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Math 217 Fall 2000 Exam 2Notational Remark: In this exam, the symbol ∂∂x( )y x means dydx.1. Suppose that ( )y x is a solution to the differential equation = − + ∂∂2x2( )y x 4∂∂x( )y x 3 ( )y x 0. Then ( )y x might equal which of the following expressions: a) + 2 exe( )−3 x b) + e( )−x2 e( )3 x c) − 5 exe( )3 x d) − e( )−xe( )−3 x e) + exx ex f) + e( )2 x2 x e( )2 x g) e( )−4 x( )sin 3 x h) e( )4 x( )sin 3 x i) e( )2 x( )sin 3 x j) e( )( )−2 x( )sin 3 xSolution: c> factor(r^2-4*r+3);( ) − r 1 ( ) − r 3> dsolve(diff(y(x),x$2)-4*diff(y(x),x)+3*y(x) = 0,y(x)); = ( )y x + _C1 ex_C2 e( )3x2. Suppose that ( )y x is a solution to the differential equation = + 4∂∂2x2( )y x 100 ( )y x 0. Then ( )y x might equal which ofthe following expressions: a) − 2 ( )cos 2 x 3 ( )sin 2 x b) + 3 ( )sin 2 x x ( )sin 2 x c) 4 ex( ) + ( )cos x ( )sin x d) − e( )10 xe( )4 x e) + e( )5 xe( )10 x f) − ( )cos 5 x 3 ( )sin 5 x g) − ( )cos 10 x 2 ( )sin 10 x h) − ( )cos 100 x 2 ( )sin 100 x i) + 3 ( )cos 400 x ( )sin 400 x j) + 2 ( )cos 20 x ( )sin 20 xSolution: f> dsolve(4*diff(y(x),x$2) + 100*y(x) = 0,y(x)); = ( )y x + _C1 ( )cos 5 x _C2 ( )sin 5 x3. Suppose that ( )y x is a solution of the differential equation = − + ∂∂2x2( )y x 8∂∂x( )y x 25 ( )y x 0. Then ( )y x might be equal to: a) + 7 e( )3 x11 e( )4 x b) + 7 e( )3 x11 e( )5 x c) + 7 e( )4 x11 e( )5 x d) + 7 e( )4 x( )cos 25 x 11 e( )4 x( )sin 25 x e) + 7 e( )3 x( )cos 5 x 11 e( )3 x( )sin 5 xf) + 7 e( )2 x( )cos 3 x 11 e( )2 x( )sin 3 x g) + 7 e( )4 x( )cos 3 x 11 e( )4 x( )sin 3 x h) + 7 e( )5 x( )cos 4 x 11 e( )5 x( )sin 4 x i) + 7 e( )25 x( )cos 8 x 11 e( )25 x( )sin 8 x j) + 7 e( )25 x( )cos 4 x 11 e( )25 x( )sin 4 xSolution: g > dsolve(diff(y(x), x$2)-8*diff(y(x),x)+25*y(x) = 0,y(x)); = ( )y x + _C1 e( )4x( )sin 3 x _C2 e( )4x( )cos 3 x4. Which of the following has a form that is appropriate for a particular solution of the equation = − ∂∂x( )y x ( )y x + x ( )cos 2 x . a) c1x b) c1( )cos 2 x c) + c1x c2( )cos 2 x d) + + c1x c2( )cos 2 x c3( )sin 2 x e) + + + c1c2x c3( )cos 2 x c4( )sin 2 x f) c1ex g) + c1c2ex h) + + c1c2x c3ex i) + c1x ( )cos 2 x c2x ( )sin 2 x j) + + + c1x ( )cos 2 x c2x ( )sin 2 x c3x2( )cos 2 x c4x2( )sin 2 x Solution: e> dsolve(diff(y(x),x)-y(x) = x+cos(2*x),y(x)); = ( )y x − − − + + x 115( )cos 2 x25( )sin 2 x ex_C15. When the Method of Undetermined Coefficients is used to solve the differential equation = + y ( )'' x π ( )y x x2ex( )sin x how many undetermined coefficients must be determined? a) 9 b) 8 c) 7 d) 6 e) 5 f) 4 g) 3 h) 2 i) 1 j) 0 Solution: d > particularSolution := y(x) = sum(x^k*exp(x)*(c[k,1]*cos(x)+c[k,2]*sin(x)),k=0..2);particularSolution ( )y x ex( ) + c,0 1( )cos x c,0 2( )sin x x ex( ) + c,1 1( )cos x c,1 2( )sin x + = := x2ex( ) + c,2 1( )cos x c,2 2( )sin x + > ode := diff(y(x), x$2) + Pi*y(x) = x^2*exp(x)*sin(x); := ode = + ∂∂2x2( )y x π ( )y x x2ex( )sin x> subs(particularSolution,ode):> undeterminedCoefficientsIdentity := simplify(%):> solve(identity(undeterminedCoefficientsIdentity,x),{seq(c[k,1],k=0..2)} union {seq(c[k,2],k=0..2)} ); = c,2 1−21 + π24 = c,0 18π ( )− + 20 3 π2( ) + π24 ( ) + + 8 π216 π4 = c,1 2−4 + − π24 π 4 + + 8 π216 π4, , ,{ = c,0 2−2 − + π448 π248( ) + π24 ( ) + + 8 π216 π4 = c,1 1−4 − − π24 π 4 + + 8 π216 π4 = c,2 2π + π24, , }6. When the Method of Variation of Parameters is used to find a particular solution of the differential equation = + ∂∂2x2( )y x ( )y x ( )sec x which of the following integrals arises:a) d⌠⌡ ( )sec x x b) d⌠⌡( )sec x2x c) d⌠⌡ ( )tan x x d) d⌠⌡ ( )sec x ( )tan x x e) d⌠⌡( )tan x2x f) d⌠⌡ ( )sin x ( )tan x x g) d⌠⌡x ( )tan x x h) d⌠⌡x ( )sec x x i) d⌠⌡( )sin x2( )sec x x j) d⌠⌡x ( )ln ( )sec x xSolution: c > dsolve(diff(y(x),x$2)+y(x) = 0, y(x)); = ( )y x + _C1 ( )sin x _C2 ( )cos x> y1 := x -> cos(x); y2 := x -> sin(x); := y1 cos := y2 sin> with(linalg):> w := wronskian(vector([y1(x),y2(x)]),x); := w( )cos x ( )sin x− ( )sin x ( )cos x> f := x -> sec(x); := f sec> -y1(x)*Int(y2(x)*f(x)/det(w),x) + y2(x)*Int(y1(x)*f(x)/det(w),x);− + ( )cos x d⌠⌡( )sin x ( )sec x + ( )cos x2( )sin x2x ( )sin x d⌠⌡( )cos x ( )sec x + ( )cos x2( )sin x2x> simplify(%);− + ( )cos x d⌠⌡( )sin x( )cos xx ( )sin x d⌠⌡1 x 7. The graph of a function → t ( )x t is plotted below. What might ( )f t be if ( )x t satisfies the differential equation = + ∂∂2t2( )x t 9 ( )x t ( )f t and if ( )x t has the following grapha) ( )cos 3 b) ( )sin 9 c) ( )cos 3 t d) ( )sin 9 t e) e( )3 t f) e( )−3 t g) e( )3 t h) e( )− 3 t i) ( )sin 3 j) ( )cos 3 t Solution: c The natural frequency is 9 or 3. The graph illustrates resonance. This phenomenon occurs in anundamped mechanical system when the sinusoidal driving frequency is the same as the natural frequency. 8. What is the least positive eigenvalue λ of the endpoint problem , , = + y ( )'' x λ ( )y x 0 …


View Full Document

WUSTL MATH 217 - M217F00ES2R6

Download M217F00ES2R6
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view M217F00ES2R6 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view M217F00ES2R6 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?