DOC PREVIEW
UCLA STAT 100A - MGF Derivations

This preview shows page 1-2-3-4 out of 11 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

NCSSM Statistics Leadership Institute Notes The Theory of InferenceMoment Generating Functions and Their PropertiesThe ith moment of a random variable Y is defined to be E Yii( ) =′µ . So the expectedvalue or mean of Y, EY(), is the first moment E Y( )1. The expected value of Y2,E Y( )2, which can be used to find the variance of Y, is the second moment.The moment generating function mt() for a random variable Y is defined to beE etY( ) where t is in a small neighborhood of zero. Som t E e E tYtY tYtY( ) ( )( )!( )!...= = + + + +FHGIKJ12 32 3 since the series expansion fore tYtY tYtY= + + + +12 32 3( )!( )!.... Also, ′ = + + +FHGIKJm t E YtY t Y( )! !...22332 2 3. Setting t=0,we have ′=+++=m E Y E Y( ) ( ...) ( )0 0 0 . So, the first derivative of the momentgenerating function evaluated at t=0 is the expected value of Y. That is,′==m E Y( ) ( )0µ. Thus, if you have the moment generating function for a randomvariable, you can find µ by taking the first derivative and evaluating it at zero.Now look at the second derivative:′′ = +⋅+FHGIKJm t E YtY( )!...233 23, and ′′=m E Y( ) ( )02.Since V Y E Y E Y( ) ( ) [ ( )]= −2 2, we can use the first and second derivatives of the momentgenerating function to find the variance of a random variable. Before proceeding we willverify that V Y E Y E Y( ) ( ) [ ( )]= −2 2: V Y E Y E Y Y( ) ( ) ( )= − = − +µ µ µ2 2 22 = − += − += − += − += − = −E Y E Y EE Y E YE YE YE Y E Y E Y( ) ( ) ( )( ) [ ( )]( ) ( )( )( ) ( ) [ ( )]2 22 22 22 2 22 2 2 22222µ µµ µµ µ µµ µµThe argument given above essentially repeats the calculation for (),ijCovYY on page 7.Covariance is more general, since ()(),CovYYVarY= .Note that if Y is a discrete random variable,NCSSM Statistics Leadership Institute Notes The Theory of Inference11222()()()()()1...2! ()()()()...2!tYtyYtymtEeepypytytpytypyypy===+++=+++∑∑∑∑∑2222212 1()()... since is constant in the sum2! 1()()...2! 1...2!ttypyypytttEyEyttµµ=+++=+++′′=+++∑∑as we would expect since this is a moment generating function.Example 1Suppose Y is a Poisson random variable with parameter λ. Then p yeyy( )!=−λλ fory=012,,...., where λ represents the rate at which something happens. Find the momentgenerating function and use it to find the mean and variance of Y.Solution:First find m t E ee eyYtYty yy( ) ( )!= =−=∞∑λλ0 = =−=∞−∑eeye et yyetλ λ λλ( )!0 since ( )!eyt yyλ=∞∑0 is the power series for eetλ ==− −eee et tλ λ λ ( )1 ∴ =−m t eYet( )( )λ 1Find derivatives of m tY( ) to use for computing µand σ2.′= ⋅−m t e ee tt( )( )λλ1′′= +− −m t e e e e ee t t e tt t( )( ) ( )λ λλ λ λ1 1E Y m e e( ) ( )= =′= =⋅µ λ λλ00 0E Y m e e e e e( ) ( )2 0 0 0 0 0 20=′′= + = +λ λ λ λ λV Y E Y E Y( ) ( ) [ ( )]= = −σ2 2 2 = + − =( )λ λ λ λ2 2The Poisson distribution has mean and variance of λ.Example 2Suppose Y has a geometric distribution with parameter p. Show that the momentgenerating function for Y is m tpeqett( ) =−1 where qp=−1.NCSSM Statistics Leadership Institute Notes The Theory of Inference12Solution:( )111111() 1, 2,...()()() Note: geometric series with common ratio 1ifln11ytYtyyYytytyttttpyqpymtEeepqpqeqeqtqqepepqqeqe−∞−=∞−=−=====<<−==−−∑∑Now that we know the moment generating function, it is a simple matter to find the meanand variance of the geometric distribution.For the mean we have( )()()( ) ( )22111tttttttqepepeqepemtqeqe−−−′==−−, so ( )( )0220101pepmppqe′===−.For the variance we have( )()( )()()( )()( )243121111tttttttttqepepeqeqepeqemtqeqe−−−−+′′==−−and( )()( )( )00332011101peqepqqmppqe+++′′===−,so ( ) ( ) ( )( )222211100qpVarYmmppp+−′′′=−=−=.Example 3Find the moment generating function for a random variable with a standard normaldistribution. That is, find the moment generating function for ZN~(,)01. Note thatZN~(,)01is read: Z is distributed as a normal random variable with µ=0 and σ21= .Solution:m t E e e e dzZtZ tzz( ) ( )= =−∞∞−z1222π =−∞∞−+ − +FHGIKJz122 2 2222 2 2πe dzz tz t tNCSSM Statistics Leadership Institute Notes The Theory of Inference13 =−∞∞− −ze e dzt z t2 22 212π( ) = = =−∞∞ze normal density t dzt22 21 , ,µ σd i =⋅=eet t2 22 21It is straight forward to verify that the mean and variance are 0 and 1, respectively.Example 4Show that the moment generating function for a random variable Y N~ ( , )µ σ2is222()ttYmteσµ += . Use the moment generating function to show that EY()=µ.Solution:Following the outline of Example 3, we havem t E e e e dyYtY tyy( ) ( )( )= =−∞∞− −z121222πσσµ =−∞∞− − +z1212222222πσσµσσ e dyyty( )Consider the exponent:− − −12222 2σµ σ[( ) ]y ty = − − − − −12222 2 2 4 2σµ σ σ µ σ[(( ) ) ]y t t tSo m t e dyYy t tt( )[( ) ]=−∞∞ −− − + +z1212222 22 2πσσµ σ µσ =+−∞∞ −− −ze e dytty tµσσµ σπσ2 222 221212 [( ) ] (the integrand is a normal density function) = = + =+−∞∞ze normal density t dyttµσµ σ σ2 222 2( , ,var ) mean =⋅=+ +eettttµσµσ2 2 2 22 21Now to find the expected value of Y: ( )2222()ttmtetσµµσ+′=+ ′= + =m e( ) ( )0 00µ µ .The variance of Y is found by computing: ( ) ( )222222222()ttttmteetσσµµσµσ++′′=++NCSSM Statistics Leadership Institute Notes The Theory of Inference14 ( )()( )2020220meeσµσµ′′=+=+.Then ()2222Varyσµµσ=+−= .A more direct derivation can also be given:()( )()( )()( )( )2221122()ttttztztYtttYZmtEeEeEeeemteeeσµσµσσµµµσ++===⋅===.Example 5Find the moment generating function for a random variable with a gamma distribution.Solution:1/01()()()tYytyYmtEeyeedyαβαβα∞−−==Γ∫ =−− −∞z1110β αααβΓ( )( )y e dyy t (Recall that αβ and ()αΓ are constants)Rewrite the expression 1111tttβββββ−−==− =−−−FHGIKJ∞z1110β αααββΓ( )y e dyytSince we have previously shown that y e dyyα β αβ α− −∞=z10/( )Γ,=−FHGIKJ11β αββαααΓΓ( )( )t =−=−FHGIKJ1111( )β βααt t, if 1tβ<.Recall that the chi-square distribution is a special case of the gamma distribution withβ=2 and αν=/ 2. So it follows from Example 5 that if 2~ ()Yχν, thenm ttY( )/=−FHGIKJ11 22ν.From this moment generating function we can find


View Full Document

UCLA STAT 100A - MGF Derivations

Download MGF Derivations
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view MGF Derivations and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view MGF Derivations 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?