Special Relativity

(2 pages)
Previewing page 1 of actual document.

Special Relativity

Lecture number:
36
Pages:
2
Type:
Lecture Note
School:
The University of Vermont
Course:
Phys 012 - Elementary Physics
Edition:
1
Documents in this Packet
• 6 pages

• 2 pages

• 1 pages

• 2 pages

• 2 pages

• 3 pages

• 4 pages

• 3 pages

• 3 pages

• 5 pages

• 2 pages

• 2 pages

• 2 pages

• 3 pages

• 4 pages

• 4 pages

• 4 pages

• 4 pages

• 4 pages

• 3 pages

• 4 pages

• 2 pages

• 3 pages

• 5 pages

• 4 pages

• 3 pages

• 3 pages

• 4 pages

• 3 pages

• 3 pages

• 4 pages

• 5 pages

• 5 pages

• 4 pages

• 4 pages

• 3 pages

• 4 pages

• 3 pages

• 3 pages

• 2 pages

• 2 pages

• 2 pages

Unformatted text preview:

Lecture 36 Outline of Last Lecture I. Quantum Numbers a. Principal Quantum Number (n) i. n = 1, 2, 3, … ∞ ii. determines total energy of atom iii. All states with the same principal quantum number are said to form a shell. n Name 1 k 2 L 3 m b. Orbital Quantum Number (l) i. l = 0, 1, 2, 3, … (n-1) ii. gives us the total angular momentum of an electron in its orbital iii. All states with the same value for l form a sub shell l Name 1 s 2 p 3 d 4 f 5 g c. Magnetic Quantum Number (ml) i. ml = -l, (-l+1), … 0 … l, (l+1) ii. gives us component of angular momentum along the direction of an applied magnetic field iii. ex) Lz = mlħ; If l = 2 then ml = -2, -1, 0, 1, 2; Lz = ħ√(6); and Lz = -2ħ, -ħ, 0, ħ, 2ħ. d. Spin Quantum Number (ms) i. Can either be up (+1/2) or down (-1/2). II. Pauli Exclusion Principal a. No two electrons in an atom can be in the same quantum state (all the same quantum numbers). b. Allowed quantum states for electrons up to n = 3: k L m n 1 2 3 l 0 0 1 0 1 2 Physics 012 1st Edition

View Full Document