# Quantized Electron Orbitals

(3 pages)
Previewing page 1 of actual document.

## Quantized Electron Orbitals

Lecture number:
34
Pages:
3
Type:
Lecture Note
School:
The University of Vermont
Course:
Phys 012 - Elementary Physics
Edition:
1
##### Documents in this Packet
• 6 pages

• 2 pages

• 1 pages

• 2 pages

• 2 pages

• 2 pages

• 4 pages

• 3 pages

• 3 pages

• 5 pages

• 2 pages

• 2 pages

• 2 pages

• 3 pages

• 4 pages

• 4 pages

• 4 pages

• 4 pages

• 4 pages

• 3 pages

• 4 pages

• 2 pages

• 3 pages

• 5 pages

• 4 pages

• 3 pages

• 3 pages

• 4 pages

• 3 pages

• 3 pages

• 4 pages

• 5 pages

• 5 pages

• 4 pages

• 4 pages

• 3 pages

• 4 pages

• 3 pages

• 3 pages

• 2 pages

• 2 pages

• 2 pages

Unformatted text preview:

Lecture 34 Outline of Last Lecture I. Compton Effect a. Photons have no mass but can impart momentum. i. Classical equation for momentum: p = mv 1. Used when v << c (10% or less) ii. Relativistic equation for momentum: p = mv/√(1-[v2/c2]) iii. Relativistic energy: E = mc2/√(1-[v2/c2]) iv. p = Ev/c2 1. If v = c, then p = E/c = hf/c = h/λ II. de Broglie Wavelength a. All objects have a wavelength equal to Planck’s constant divided by the momentum of the object. i. λB = h/p = h/mv III. Double Slit Experiment with Electrons a. We observe an interference pattern because, due to the electron’s wave characteristics, the electron reacts with both openings at once. b. Location of first minimum: i. dsinθ = λ/2 ii. small angle approx. : sinθ ≈ θ iii. θ = λ/2d = h/2dp 1. Increased speed of electron = compressed pattern IV. Heisenberg Uncertainty Principle a. When we measure an object’s position and momentum simultaneously, there are inherent uncertainties built into these measurements. Physics 012 1st Edition

View Full Document