This preview shows page 1-2 out of 5 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

STAT 418HW12 SolutionsSections 6.2-6.515, 20, 21, 23, 27, 28, 32, 33; TE 915.a. Let A denote the area of region R, then A =R R(x,y)∈Rdydx. Because f(x, y) is a joint pdf,1 =Z Z(x,y)∈Rf(x, y)dydx =Z Z(x,y)∈Rcdydx = cZ Z(x,y)∈Rdydx = cA.Therefore c = 1/A.b.f(x, y) =14, x ∈ (−1, 1), y ∈ (−1, 1)fX(x) =Z1−114dy =14+14=12, x ∈ (−1, 1), X ∼ U (−1, 1)fY(y) =Z1−114dx =14+14=12, y ∈ (−1, 1), Y ∼ U(−1, 1)Because the joint density is the product of the marginal densities, f(x, y) = fX(x)fY(y),X and Y are independent.c.P (X2+ Y2≤ 1) =Z Zx2+y2≤114dydx=14Z Zx2+y2≤1dydx=π124=π4.20.a. Yes.f(x, y) = fX(x)fY(y) = xe−xe−y, x > 0, y > 0.b. No.fX(x) =Z1xf(x, y)dy = 2(1 − x), 0 < x < 1fY(y) =Zy0f(x, y)dx = 2y, 0 < y < 1.121.a. f(x, y) ≥ 0 for all x, y.Z∞−∞f(x, y)dxdy =Z10Z1−y024xy dx dy=Z1012y(1 − y)2dy=Z1012(y − 2y2+ y3)dy= 12(1/2 − 2/3 + 1/4) = 1.b.E(X) =Z10xfX(x)dx=Z10xZ1−x024xy dy dx=Z1012x2(1 − x)2dx = 2/5.c.E(Y ) =Z10yfY(y)dy=Z10yZ1−y024xy dx dy=Z1012y2(1 − y)2dy = 2/5.23.a. Yes.f(x, y) = 6x(1 − x) · 2y = fX(x) · fY(y), 0 < x < 1, 0 < y < 1.b.E(X) =Z106x2(1 − x)dx = 1/2.c.E(Y ) =Z102y2dy = 2/3.d.V ar(X) =Z106x3(1 − x)dx − 1/4 = 1/20.e.V ar(Y ) =Z102y3dy − 4/9 = 1/18.227. Given: The joint pdf of (X, Y ) isf(x, y) = e−y, x ∈ (0, 1), y > 0.a. Let W = X + Y and V = Y . Then X = W − V and Y = V. The Jacobian of thistransformation isabs1 −10 1= 1.Therefore the joint pdf of (W, V ) isf(w, v) = e−v, 0 < w − v < 1, v > 0 ⇒ 0 < w − 1 < v < w.Therefore the marginal pdf of W isfW(w) =Rw0e−vdv, 0 ≤ w ≤ 1Rww−1e−vdv, w > 1=1 − e−w, 0 ≤ w ≤ 1e1−w− e−w, w > 1b. Let W = X/Y and V = Y . Then X = W V and Y = V. The Jacobian of thistransformation isabsv w0 1= v.Therefore the joint pdf of (W, V ) isf(w, v) = ve−v, 0 < wv < 1, v > 0 ⇒ 0 < v < 1/w.Therefore the marginal pdf of W isfW(w) =Z1/w0ve−vdv, w > 0= 1 − e−1/w/w − e−1/w, w > 028.a. Given: The joint pdf of (X1, X2) isf(x1, x2) = λ1λ2e−λ1x1−λ2x2, x1> 0, x2> 0.Let Z = X1/X2and V = X2. Then X1= ZV and X2= V. The Jacobian of thistransformation isabsv z0 1= v.Therefore the joint pdf of (Z, V ) isf(z, v) = λ1λ2ve−v(λ1z+λ2), z > 0, v > 0.Therefore the marginal pdf of Z isfZ(z) =Z∞0λ1λ2ve−v(λ1z+λ2)dv= λ1λ2(λ1z + λ2)−2, z > 0.3b.P (X1< X2) = P (Z < 1)=Z10λ1λ2(λ1z + λ2)−2dzLet u = λ1z + λ2.= λ2Zλ1+λ2λ21u2du= λ2−1uλ1+λ2λ2= 1 −λ2λ1+ λ2=λ1λ1+ λ2.32. Assume that weekly sales are independent.a. Let Z ∼ N (0, 1) and W = X1+ X2denote weekly sales over the next 2 weeks, thenW ∼ N(4400, 2302+ 2302).P (W > 5000) = PW − 4400√105800>5000 − 4400√105800= P (Z > 600/325.27) = P (Z > 1.84) = .0326.b. Let X denote the sales in a week.P (X > 2000) = PX − 2200230>2000 − 2200230= P (Z > −.87) = .8078.Let p = 0.8078. The probability that weekly sales exceeds 2000 in at least 2 of the next3 weeks is P(X > 2000 in all 3 weeks ∪ X > 2000 in exactly 2 of the next weeks)= p3+32p2(1 − p).33. Let Z ∼ N (0, 1), X denote Jill’s score, and Y denote Jack’s score.a.P (X < Y ) = P ((X − Y ) < 0)= PX − Y − (170 − 160)√202+ 152<−(170 − 160)√202+ 152= P (Z < −10/25) = P (Z < −.4) = .3446.b.P (X + Y > 350) = PX + Y − (170 + 160)√202+ 152>350 − (170 + 160)√202+ 152= P (Z > 20/25) = P (Z > .8) = .2119.4TE9. X1, . . . , Xnare independent random variables, each exponentially distributed withparameter λ. Let Y = min(X1, . . . , Xn), and let G(y) denote the CDF of Y . Then, for y > 0,G(y) = P (Y ≤ y)= P (min(X1, . . . , Xn) ≤ y)= 1 − P (min(X1, . . . , Xn) > y)= 1 − P (X1> y ∩ X2> y ∩ . . . ∩ Xn> y)= 1 −nYi=1P (Xi> y), by independence= 1 −nYi=1e−λy, because P (Xi> y) =R∞yλe−λxdx = e−λyfor all i= 1 − e−nλy,and G(y) = 0 for y ≤ 0. The density function of Y , g(y), is thereforeddyG(y) =nλe−nλy, y > 00, y ≤


View Full Document

PSU STAT 418 - hw12

Documents in this Course
Load more
Download hw12
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view hw12 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view hw12 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?