# OSU ECE 5463 - Jacobians (10 pages)

Previewing pages*1, 2, 3*of 10 page document

**View the full content.**## Jacobians

Previewing pages
*1, 2, 3*
of
actual document.

**View the full content.**View Full Document

## Jacobians

0 0 184 views

- Pages:
- 10
- School:
- Ohio State University
- Course:
- Ece 5463 - Introduction to Real Time Robotics Systems

**Unformatted text preview:**

Jacobians Read Chapter 5 What is Jacobian Study the notions of linear and angular velocities of a rigid body Analyze the motion linear and angular motions of a robot manipulator hand leg foot We will use a matrix called Jacobian to relate the joint velocities to the linear and angular velocities of the hand or foot The same matrix can also be used to study the relationship between the static force acting on the hand foot and the joint torques Velocity of a position vector The positon of a point can be expressed as a vector in a frame B The velocity of the position vector can be expressed as lim B When the velocity is expressed in reference frame A A The velocity of the origin of frame B in frame A Angular velocity vector The angular velocity vector describes the rotation of frame B relative to frame A B A Linear and rotational velocity of a rigid body A rigid body such as a robotic link could have both linear and rotational motions in the space we should have ways to describe them Consider the linear velocity of the point vector due to linear motions of the B frame and the point function of joint angles B A Linear velocity due to rotation of the frame also function of joint angles When the frame has both linear and rotational motions When frame B has both linear and rotational motions with respect to frame A the velocity of the position vector can be expressed as The above is the general result of the velocity of a position vector in the moving frame with respect to a stationary frame clearly it is a function of joint angles offsets Velocity propagation from link to link in a robot The motions of link n of a robot manipulator is affected by all the previous links j 1 2 n 1 The question is how the link motions are propagated through to link n or any link Rotational motion or Note 0 0 Inertia tensor examples 1 Linear motion where is the vector from the origin of frame to that of frame 1 expressed in frame Finally two most important equations Rotational propagation Linear propagation Jacobian Matrix In general if we have where Y and X are vectors 1 1 Take the derivative of both sides one may have is called Jacobian matrix What is the dimension of J Or we may have where and could be called Cartesian velocity the vector of joint velocities X is the vector of joint angles Force and torque relation Work performed by the joint torques in the joint coordinates Work performed by the hand in the Cartesian coordinates The two should be equal As a result Static force and torque relationship

View Full Document