Unformatted text preview:

2/10/2005 CHEM 408 - Sp05L5 - 1......)3,2,1(321χχχ=Ψ)}1(or )1({)1()1(βαψχ×=ii)1()1(∑=νννϕψiiC• adopt orbital approximation for electronic Ψ:multi-eΨelSlater det. of1e spin-orbitalsspin-orbitals = spatial MO × spin fn.• write MOs as linear combinations of basis functions (AOs) ϕν: with• for given basis set {ϕi}, find optimum 1e MOs {ψi} by minimizing......)3,2,1(...)3,2,1(.........)3,2,1(ˆ...)3,2,1(...ˆ321321ττττττddddddHHelappΨΨΨΨ=∫∫∫∫∫∫∗∗Ψ• difficult to solve; requires iteration to “self-consistency”• each electron interacts with average charge distribution “field” created by the remaining electronsHFHF--SCF CalculationsSCF Calculations2/10/2005 CHEM 408 - Sp05L5 - 2• consider the sort of terms that arise in using a simple 2-e Ψ: appHΨˆ{})2()1()2()1()2()1(21)2,1(3ααψψψψααψψabbaba−==Ψ{}{}{})2()1()2()1()2,1(ˆ)2()1()2()1( )2()2()1()1(21ˆ2121abbaabbaHrdrddddHψψψψψψψψααωααωτ−−×=ΨΨ∗∗∗∗∫∫∫∫∫rr11{})2()1(ˆ)2()1( )2()1(ˆ)2()1(- )2()1(ˆ)2()1(- )2()1(ˆ)2()1( 2121ababbaababbababaHHHHrdrdψψψψψψψψψψψψψψψψ∗∗∗∗∗∗∗∗+=∫∫rr• evaluating: spin parts separate and don’t contribueAABBe labels don’t matter so only 2 distinct terms A & B)2()1(ˆ)2()1()2()1(ˆ)2()1( 2121 abbababaHrdrdHrdrdψψψψψψψψ∗∗∗∗∫∫∫∫−=rrrr2/10/2005 CHEM 408 - Sp05L5 - 3• recall what’s in Ĥ:)2,1()2(ˆ)1(ˆ)2,1(ˆeeNNVVhhH +++=∑−−∇−=JJJRrZh nuclei121||21)1(ˆrr||121rrVeerr−+=∑>−+=KJKJKJNNRRZZV nuclei||rr1e or core ĥNN repulsion ( constant)ee repulsion(difficult)bbaaHHdhh +=Ψ+Ψ∫τ)}2(ˆ)1(ˆ{ *)2()2()1()1(ˆ)1()2()2()1()1(ˆ)1()2()1()1(ˆ)2()1()2()1()1(ˆ)2()1()1(ˆ 21212121*bababbaaabbababardhrdrdhrdhrdrdhrdrddhψψψψψψψψψψψψψψψψτ∗∗∗∗∗∗∗∗∫∫∫∫∫∫∫∫∫−=−=ΨΨrrrrrrrr10NNNNVdV =ΨΨ∫τ* • VNNterm is trivial:(because VNNdoesn’t depend on e coordinates)• ĥ terms reduce to 1e integrals:∫∗≡ )1()1(ˆ)1(1 iiiihrdHψψrwhere2/10/2005 CHEM 408 - Sp05L5 - 4• note that if analogous singlet is considered,the exchange term Kabterm disappears: ababeeKJdV −=ΨΨ∫ *τ• Veeterms don’t simplify:|||)2(||)1(|)2()1(||1)2()1(2122212121rrrdrdrrrdrdJbababaabrrrrrrrr−=−≡∫∫∫∫∗∗ψψψψψψ)2()1(||1)2()1(2121 abbaabrrrdrdKψψψψrrrr−=∗∗∫∫where:“Coulomb integral”classical interaction of charge distributions |ψa|2& |ψb|2“exchange integral”purely QM effect of exchange symmetry requirements on Ψ• in summary, for ααψψba=Ψ )2,1(3NNababbbaaVKJHHdH +−++=ΨΨ∫τ3*3ˆβαψψba=Ψ )2,1(1NNabbbaaVJHHdH +++=ΨΨ∫τ1*1ˆ2/10/2005 CHEM 408 - Sp05L5 - 5More generally, for a closed-shell system, one consisting of 2nelectrons electrons filling n spatial MOs in α, βpairs,NNninjijijiiVKJHdH +⎭⎬⎫⎩⎨⎧−+=ΨΨ∑∑∫==∗11)2(2ˆτ22221...)2...3,2,1(nnψψψ=Ψ)1()2()1()1(1121βψαψψ=where etc.:∫∑⎭⎬⎫⎩⎨⎧−−∇−≡∗)1(||)1( nuclei121211 iJJJiiiRrZrdHψψrrr)2()1(||1)2()1(2121 jijiijrrrdrdJψψψψrrrr−≡∗∗∫∫)2()1(||1)2()1(2121 ijjiijrrrdrdKψψψψrrrr−=∗∗∫∫∑>−+=KJKJKJNNRRZZV nuclei||rrwherecoreCoulombexchangenuclear repulsion2/10/2005 CHEM 408 - Sp05L5 - 6• now write the MOs in terms of basis functions {ϕµ} µ = 1…K:∑==KiiC1µµµϕψ(MOs i, j, …; basis fncs. or “AOs”µ, ν, …) • inserting this expansion into the preceding equations and minimizing <Ĥ>Ψwith respect to the aµias in the HMO theory (i.e. requiring for all µ, i yields the Roothan-Hall eqns:0/ˆ=∂><∂iCHµµ = 1…K)}|()|{(2111νσµλλσµνλσλσµνµν−+≡∑∑==KKcorePHF)1(||)1( nuclei121211νµµνϕϕ⎭⎬⎫⎩⎨⎧−−∇−≡∑∫∗JJJcoreRrZrdHrrr)1()1(1∗∗∫≡νµµνϕϕrdSr)2()2(1)1()1()|(1221σλνµϕϕϕϕλσµν∗∗∫∫=rrdrdrrset of K linear eqnsF = Fock matrixS = overlap matrixHcore= 1e core matrix2e Coulomb (µν|λσ) and exchange (µλ|νσ) integrals∑=∗≡niiiCCP1 MO2σλλσP density matrix0)(1=−∑=KiiCSFννµνµνε2/10/2005 CHEM 408 - Sp05L5 - 7• The Roothan-Hall eqns. are superficially like the secular eqns. from HMO theory. Using comparable notation:0)(=−ΣiiCSFνµνµννε1)1()1(ˆ)1(τϕϕνπµµνdhH∫∗≡0)(=−ΣiiCSHνµνµννε)}|()|{(2111νσµλλσµνλσλσµνµν−+≡∑∑==KKcorePHFHMO theoryHF-SCF theory• but the HF problem is not really a linear problem -- the Fockmatrix depends on the target coefficients {Cνi} through the density matrix P• whereas the HMO theory can be solved directly, the Roothan-Hall eqns. must be solved iteratively ESCHC =ESCFC=(or)2/10/2005 CHEM 408 - Sp05L5 - 8construct F(n)from P(n-1)& solve FC=SCE for C(n)& E(n)construct new P(n)from C(n)self-consistency achieved: C (or P) & E give best estimates of Ψi& Eiguess initial density matrix P(0)calc. & store* integralscoreHSµνµν ,)|(λσµνyesnoP(n) = P(n-1)?P(n-1)← P(n)The HF SCF Procedure2/10/2005 CHEM 408 - Sp05L5 - 92 Electron Integrals:)2()2(1)1()1()|(1221σλνµϕϕϕϕλσµν∗∗∫∫=rrdrdrr• distributed over 4 centers, e.g.r12e1e2ABCD||||21||||21DCBA2211||1 )s1s1|s1s1(DCBARrRrRrRreerreerdrdrrrrrrrrrrrr−−−−−−−−−∝∫∫Figs. from Szabo & Ostland, Modern Quantum Chemistry (MacMillan, 1982)• why Gaussian basis functions?STO-nG funcs.2/10/2005 CHEM 408 - Sp05L5 - 10• # integrals = (#basis fns)4/8- sets practical limits to HF calcs.⇒“Nb4scaling”Basis set: 6-31G** = 6-31G(d,p)C atom: 1s, 2s(1), 2s(2), 2p(1), 2p(2), 2d = 15H atom: 1s(1), 1s(2), 1p = 5Nb= 180; #I = 131,220,000 http://www.emsl.pnl.gov/forms/basisform.html• example: benzene• “tricks” reduce scaling to ~Nb2.7- symmetry reductions- integral size screening- fast multipole methods)exp(2rdiiiαϕ−Σ=αidi2/10/2005 CHEM 408 - Sp05L5 - 11Some Comments on HF Performance (≥pVDζbasis)1-5:• geometries typically well described1,2• bond lengths: heavy atoms X-Y ±0.03 Å; H-X ±0.015 Åsystematically too long• bond angles: ±1.5°• dihedral angles: also good• intermolecular complexes usually too loose, but H-bonded structures can be accurate• transition state structures are often reasonably described4• energies of protonation & deprotonation1,2 often accurate: • ionization potentials calculated via Koopman’s


View Full Document

PSU CHEM 408 - HF SCF Calculations

Documents in this Course
Load more
Download HF SCF Calculations
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view HF SCF Calculations and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view HF SCF Calculations 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?