DOC PREVIEW
CMU CS 10601 - lecture

This preview shows page 1-2-3-19-20-38-39-40 out of 40 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 40 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 40 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 40 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 40 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 40 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 40 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 40 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 40 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 40 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Review•Parallel importance sampling‣bias due to 1/normalizer‣particle filter = recursive parallel IS•MCMC‣randomized search for high P(x)‣burn-in, mixing‣approx. iid: { Xt, Xt+Δ, Xt+2Δ, Xt+3Δ, … }‣use to construct estimator of EP(g(X))1Review•Metropolis-Hastings‣way to design chain w/ stationary dist’n P(X)‣proposal distribution Q(X’ | X)‣e.g., random walk N(X’ | X, σ2I)‣accept w.p. min(1, )‣tension btwn long moves, high accept rateMH algorithm•Initialize X1 arbitrarily•For t = 1, 2, …:!Sample X’ ~ Q(X’ | Xt)!Compute p =!With probability min(1, p), set Xt+1 := X’!else Xt+1 := Xt•Note: sequence X1, X2, … will usually contain duplicates182MH example−1−0.500.51−1−0.8−0.6−0.4−0.200.20.40.60.81012345YXf(X,Y)3MH example−1 −0.5 0 0.5 1−1−0.500.514In example•g(x) = x2•True E(g(X)) = 0.28…•Proposal: •Acceptance rate 55–60%•After 1000 samples, minus burn-in of 100:final estimate 0.282361final estimate 0.271167final estimate 0.322270final estimate 0.306541final estimate 0.308716Q(x!| x)=N(x!| x, 0.252I)5Gibbs sampler•Special case of MH•Divide X into blocks of r.v.s B(1), B(2), …•Proposal Q:‣pick a block i uniformly‣sample XB(i) ~ P(XB(i) | X¬B(i))•Useful property: acceptance rate p = 16Gibbs example−0.8−0.6−0.4 −0.20 0.20.40.6 0.81 1.2−0.8−0.6−0.4−0.200.20.40.60.87Gibbs example−1.5−1 −0.5 0 0.51 1.5−1−0.500.518Gibbs failure example−6−4 −202 46−5−4−3−2−10123459Relational learning•Linear regression, logistic regression: attribute-value learning‣set of i.i.d. samples from P(X, Y)•Not all data is like this‣an attribute is a property of a single entity‣what about properties of sets of entities?10Application: document clustering11Application: recommendations12Latent-variable models13Best-known LVM: PCA•Suppose Xij, Uik, Vjk all ~ Gaussian‣yields principal components analysis‣or probabilistic PCA‣or Bayesian PCA14PCA: the picture15Mean subtraction‣Uik ~ N(0, ν2)‣Vjk ~ N(0, ν2)‣Xij ~ N(Ui⋅Vj, σ2)>> mu = mean(X(:));>> colmu = mean(X - mu);>> rowmu = mean(X' - mu)';>> X = X - mu - repmat(colmu, size(X,1), 1) - repmat(rowmu, 1, size(X,2));16Data weights•Let Wij =•Likelihood ⋅ prior = •More generally, Wij ≥ 017PCA: cartoon example123456…ABCDEF…110010…011000…110110…100110…010100…011101……………………MovieUser18PCA: cartoon examplex1x2x3...xnData matrix X≈Compressed matrix Uu1u2u3...unv1 … vkBasis matrix VT19PCA: cartoon examplex1x2x3...xnData matrix X≈Compressed matrix Uu1u2u3...unv1 … vkBasis matrix VTrows of VT span the low-rank space19Interpreting PCAu1u2u3...unv1 … vkusersmoviesbasis weightsbasis vectors20Interpreting PCAu1u2u3...unv1 … vkusersmoviesbasis weightsbasis vectorsBasis vectors represent movies that vary togetherWeights say how much each user cares about each type of movie20Another use of PCAface images from Groundhog Day, extracted by Cambridge face DB project21Image matrixx1x2x3...xnimagespixels22Result of factoringu1u2u3...unv1 … vkimagespixelsbasis weightsbasis vectorsBasis vectors are often called “eigenfaces”23Eigenfacesimage credit: AT&T Labs Cambridge24PCA: finding the MLE•PCA: ‣Uik ~ N(0, ν2)‣Vjk ~ N(0, ν2)‣Xij ~ N(Ui⋅Vj, σ2)‣σ/ν → 025PCA & SVD•The singular value decomposition is‣X = R Σ ST‣R, S orthonormal; Σ ≥ 0 diagonal‣All matrices can be expressed this way‣See svd, svds in Matlab•So, PCA is U = V =26PageRank•SVD is pretty useful: turns out to be main computational step in other models too•A famous one: PageRank‣Given: web graph (V, E)‣Predict: which pages are important27PageRank: adjacency matrix28Random surfer model‣W. p. α:‣W. p. (1–α):‣Intuition: page is important if a random surfer is likely to land there29Stationary distributionA B C D00.10.20.30.40.530Thought experiment•What if A is symmetric?‣note: we’re going to stop distinguishing A, A’•So, stationary dist’n for symmetric A is:•What do people do instead?31Spectral embedding•Another famous model: spectral embedding (and its cousin, spectral clustering)•Embedding: assign low-D coordinates to vertices (e.g., web pages) so that similar nodes in graph ⇒ nearby coordinates‣A, B similar = random surfer tends to reach the same places when starting from A or B32Where does random surfer reach?•Given graph: •Start from distribution π‣after 1 step: P(j | π, 1-step) = ‣after 2 steps: P(j | π, 2-step) = ‣after t steps:33Similarity•A, B similar = random surfer tends to reach the same places when starting from A or B•P(j | π, t-step) = ‣If π has all mass on i:‣Compare i & j: ‣Role of Σt:34Role of Σt (real data)2 46 81000.20.40.60.81 t=1t=3t=5t=1035Example: dolphins•62-dolphin social network near Doubtful Sound, New Zealand‣Aij = 1 if dolphin i friends dolphin j(Lusseau et al., 2003)0 20 40 600102030405060nz = 31836Dolphin network!!"# !!"$! !"$!"#!"%!!"%!!"#!!"$!!"$!"#!"%!!"# !!"$! !"$!"#!!"#!!"%!!"$!!"&!!"&!"$!"%!"#spectral embedding random embedding37Spectral clustering•Use your favorite clustering algorithm on coordinates from spectral embedding!!"# !!"$!


View Full Document

CMU CS 10601 - lecture

Documents in this Course
Problem

Problem

12 pages

lecture

lecture

36 pages

Lecture

Lecture

31 pages

Review

Review

32 pages

Lecture

Lecture

11 pages

Lecture

Lecture

18 pages

Notes

Notes

10 pages

Boosting

Boosting

21 pages

review

review

21 pages

review

review

28 pages

Lecture

Lecture

31 pages

lecture

lecture

52 pages

Review

Review

26 pages

review

review

29 pages

Lecture

Lecture

37 pages

Lecture

Lecture

35 pages

Boosting

Boosting

17 pages

Review

Review

35 pages

lecture

lecture

32 pages

Lecture

Lecture

28 pages

Lecture

Lecture

30 pages

lecture

lecture

29 pages

leecture

leecture

41 pages

lecture

lecture

34 pages

review

review

38 pages

review

review

31 pages

Lecture

Lecture

41 pages

Lecture

Lecture

15 pages

Lecture

Lecture

21 pages

Lecture

Lecture

38 pages

Notes

Notes

37 pages

lecture

lecture

29 pages

Load more
Download lecture
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view lecture and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view lecture 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?