Unformatted text preview:

Math 311-504Topics in Applied MathematicsLecture 7:Linear independence (continued).Matrix algebra.Linear independenceDefinition. Vectors v1, v2, . . . , vk∈ Rnare calledlinearly dependent if they satisfy a relationt1v1+ t2v2+ · · · + tkvk= 0,where the coefficients t1, . . . , tk∈ R are not allequal to zero. Otherwise the vectors v1, v2, . . . , vkare called linear ly independent. That is, ift1v1+t2v2+ · · · +tkvk= 0 =⇒ t1= · · · = tk= 0 .Theorem The vectors v1, . . . , vkare linearlydependent if and only i f one of them is a linearcombination of the others.Definition. A subset S ⊂ Rnis called a hyperplane(or an affine subspace) if it has a parametricrepresentation t1v1+ t2v2+ · · · + tkvk+ v0,where viare fixed n-dimensional vectors and tiarearbitrary scalars.The number k of parameters may depend on arepresentation. The hyperplane S is called ak-plane if k is as small as possible.Theorem A hyperpl anet1v1+ t2v2+ · · · + tkvk+ v0is a k-plane if and only if vectors v1, v2, . . . , vkarelinearly independent.Examples• Vectors e1= (1, 0, 0), e2= (0, 1, 0), ande3= (0, 0, 1) in R3.t1e1+ t2e2+ t3e3= 0 =⇒ (t1, t2, t3) = 0=⇒ t1= t2= t3= 0Thus e1, e2, e3are linearly independent.• Vectors v1= (4, 3, 0, 1), v2= (1, −1, 2, 0), andv3= (−2, 2, −4, 0) in R4.It is easy to observe that v3= −2v2.=⇒ 0v1+ 2v2+ 1v3= 0Thus v1, v2, v3are linearly dependent. At the same time, thevector v1is not a linear combination of v2and v3.• Vectors u1= (1, 2, 0), u2= (3, 1, 1), andu3= (4, −7, 3) in R3.We need to check if the vector equation t1u1+ t2u2+ t3u3= 0has solutions other than t1= t2= t3= 0.This vector equation is equivalent to a systemr1+ 3r2+ 4r3= 0,2r1+ r2− 7r3= 0,r2+ 3r3= 0.1 3 402 1 −700 1 30Row reduction yields:1 3 402 1 −7 00 1 3 0→1 3 400 −5 −15 00 1 3 0→1 3 4 00 1 3 00 0 0 0The variable t3is free =⇒ there are infinitely many solutions=⇒ the vectors u1, u2, u3are linearly dependent.MatricesDefinition. An m-by-n matrix is a rectangulararray of numbers that has m row s and n columns:a11a12. . . a1na21a22. . . a2n............am1am2. . . amnNotation: A = (aij)1≤i≤n, 1≤j≤mor simply A = ( aij)if the dimensions are known.An n-dimens ional vector can be represented as a1 × n matri x (row vector) or as an n × 1 matrix(column vector):(x1, x2, . . . , xn)x1x2...xnAn m × n m atrix A = (aij) can be regarded as acolumn of n-dimensional row vectors or as a row o fm-dimensional col umn vectors:A =v1v2...vm, vi= (ai1, ai2, . . . , ain)A = (w1, w2, . . . , wn), wj=a1ja2j...amjVector algebraLet a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)be n-dimensional vectors, and r ∈ R be a scalar.Vector sum: a + b = (a1+ b1, a2+ b2, . . . , an+ bn)Scalar multiple: ra = (ra1, ra2, . . . , ran)Zero vector: 0 = (0, 0, . . . , 0)Negative of a vector: −b = (−b1, −b2, . . . , −bn)Vector di fference:a − b = a + (−b) = (a1− b1, a2− b2, . . . , an− bn)Matrix algebraDefinition. Let A = (aij) and B = (bij) be m×nmatrices. The sum A + B is defined to be the m×nmatrix C = (cij) such that cij= aij+ bijfor allindices i, j.That is, two matrices with the same dimensions canbe added by adding their corresponding entries.a11a12a21a22a31a32+b11b12b21b22b31b32=a11+ b11a12+ b12a21+ b21a22+ b22a31+ b31a32+ b32Definition. Given an m×n matrix A = ( aij) and anumber r , the scalar multiple rA is defined to bethe m×n matrix D = (dij) such that dij= raijfor allindices i, j.That is, to multiply a matrix by a scalar r ,one multiplies each entry of the matrix by r.ra11a12a13a21a22a23a31a32a33=ra11ra12ra13ra21ra22ra23ra31ra32ra33The m×n zero matrix (all entries are zeros) isdenoted Omnor simply O.Negative of a matrix: −A is defined as (−1)A.Matrix difference: A − B is defined as A + (−B).As far as the linear oper ati ons (addition and scalarmultiplication) are concerned, the m×n matricescan be regarded as mn-dimensio nal vectors.ExamplesA =3 2 −11 1 1, B =2 0 10 1 1,C =2 00 1, D =1 10 1.A + B =5 2 01 2 2, A − B =1 2 −21 0 0,2C =4 00 2, 3D =3 30 3,2C + 3D =7 30 5, A + D is not defined.Properties o f linear operations(A + B) + C = A + (B + C )A + B = B + AA + O = O + A = AA + ( −A) = (−A) + A = Or(sA) = (rs)Ar(A + B) = rA + rB(r + s)A = rA + sA1A = A0A = ODot productDefinition. The dot product of n-dimensionalvectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)is a scalarx · y = x1y1+ x2y2+ · · · + xnyn=nXk=1xkyk.Matrix multiplicationThe product of matrices A and B is defined if thenumber of columns in A matches the number ofrows in B.Definition. Let A = (aik) be an m×n matrix andB = (bkj) be an n×p matri x. The product AB isdefined to be the m×p matrix C = (cij) such thatcij=Pnk=1aikbkjfor all indices i, j.That is, matrices are multiplied r ow by column:∗ ∗ ∗* * *∗ ∗* ∗∗ ∗ * ∗∗ ∗ * ∗=∗ ∗ ∗ ∗∗ ∗ * ∗A =a11a12. . . a1na21a22. . . a2n............am1am2. . . amn=v1v2...vmB =b11b12. . . b1pb21b22. . . b2p............bn1bn2. . . bnp= (w1, w2, . . . , wp)=⇒ AB =v1·w1v1·w2. . . v1·wpv2·w1v2·w2. . . v2·wp............vm·w1vm·w2. . . vm·wpExamples.(x1, x2, . . . , xn)y1y2...yn= (Pnk=1xkyk),y1y2...yn(x1, x2, . . . , xn) =y1x1y1x2. . . y1xny2x1y2x2. . . y2xn............ynx1ynx2. . . ynxn.Example.1 1 −10 2 10 3 1 1−2 5 6 01 7 4 1=−3 1 3 0−3 17 16 1Any system of linear equations can be rewritten as amatrix equation.a11x1+ a12x2+ · · · + a1nxn= b1a21x1+ a22x2+ · · · + a2nxn= b2· · · · · · · · ·am1x1+ am2x2+ · · · + amnxn= bm⇐⇒a11a12. . . a1na21a22. . . a2n............am1am2. . . amnx1x2...xn=b1b2...bmProperties o f m atrix multiplication:(AB)C = A(BC ) (associative law)(A + B)C = AC + BC (distributive law #1)C (A + B) = CA + CB (distributive law #2)(rA)B = A(rB) = r (AB)(Any of the above identities holds provided thatmatrix sums and


View Full Document

TAMU MATH 311 - Lecture7web

Download Lecture7web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture7web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture7web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?