Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Fall 200618.01 Problem Set 4 Due Friday 10/20/06, 1:55 pm This is all of Problem Set 4 (not split into 4A and 4B). Although it is not due until after Exam 2, you should do all the Part I exercises through Lecture 16 and all the Part II problems through Problem 4 be fore the exam, in order to prepare for it. Practice exam problems and an actual past exam will be posted on line as usual. Part I (20 points) Lecture 14. Fri. Oct. 6 Mean-value theorem. Inequalities. Read: 2.6 to middle p. 77, Notes MVT Work: 2G-1b, 2b, 5, 6 (Columbus Day Holiday. No classes Mon and Tues, Oct 9 and 10) Lecture 15. Thurs. Oct. 12 Differentials and antiderivatives. Read: 5.2, 5.3 Work: 3A-1de, 2acegik, -3aceg Lecture 16. Fri. Oct. 13 Differential equations; separating variables. Read: 5.4, 8.5 Work: 3F-1cd, 2ae, 4bcd, 8b Lecture 17. Tues. Oct 17 Exam 2 Covers Lectures 8–16. Lecture 18. Thurs. Oct. 19 Definite integral; summation notation. Read: 6.3 though formula (4); skip proofs; 6.4, 6.5 Work: 3B-2ab, 3b, 4a, 5 4J-1 (set up integral; do not evaluate) Lecture 19. Fri. Oct. 20 First fundamental theorem. Properties of integrals. Read: 6.6, 6.7 to top p. 215 (Skip the proof pp. 207-8, which will be discussed in Lec 20.) Work: assigned on PS 5 Part II (36 points + 10 extra credit) Directions: Attempt to solve each part of each problem yourself. If you collaborate, solutions must be written up independently. It is illegal to consult materials from previous semesters. With each problem is the day it can be done. 0. (not until due date; 3 pts) Write the names of all the people you consulted or with whom you collaborated and the resources you used, or say “none” or “no consultation”. (See full explanation on PS1). 1. (Lec 14, 10pts: 2 + 2 + 2 + 2 + 2)) a) Use the mean value property to s how that if f (0) = 0 and f�(x) ≥ 0, then f (x) ≥ 0 for all x ≥ 0. b) Deduce from part (a) that ln(1 + x) ≤ x for x ≥ 0. Hint: Use f(x) = x − ln(1 + x). c) Use the same method as in (b) to show ln(1 + x) ≥ x − x2/2 and ln(1 + x) ≤ x − x2/2 + x3/3 for x ≥ 0. 1� � d) Find the pattern in (b) and (c) and make a general conjecture. e) Show that ln(1 + x) ≤ x for −1 < x ≤ 0. (Use the change of variable u = −x.) 2. (Lec 15, 4 pts: 2 + 2) a) Do 5.3/68 b) Show that both of the following integrals are correct, and explain. tan x sec2 xdx = (1/2) tan2 x; tan x sec2 xdx = (1/2) sec2 x 3. (Lec 16, 6 pts: 3 + 3) a) Do 8.6/5 (answer in back of text) b) Do 8.6/6 (optional?) 4. (Lec 16, 7 pts: 2 + 3 + 2) Do 3F-5abc STOP HERE. DO THE REST AFTER EXAM 2. � 1 5. (Lec 18, 6 pts) Calculate e xdx using lower Riemann sums. (You will need to sum a 0 geometric se ries to get a usable formula for the Riemann sum. To take the limit of Rie mann sums, you will need to evaluate lim n(e 1/n − 1), which can be done using the standard linear n→∞approximation to the exponential function.) 6. (Lec 16; extra credit: 10 pts: 2 + 2 + 3 + 3) More about the hypocycloid. We use differential equations to find the curve with the property that the portion of its tangent line in the first quadrant has fixed length. a) Suppose that a line through the point (x0, y0) has slope m0 and that the point is in the first quadrant. Let L denote the length of the portion of the line in the first quadrant. Calculate L2 in terms of x0, y0 and m0. (Do not expand or simplify.) b) Suppose that y = f(x) is a graph on 0 ≤ x ≤ L satisfying f(0) = L and f(L) = 0 and such that the portion of each tangent line to the graph in the first quadrant has the same length L. Find the differential equation that f satisfies. Express it in terms of L, x, y and y� = dy/dx. (Hints: This requires only thought, not computation. Note that y = f(x), y� = f�(x). Don’t take square roots, the expression using L2 is much easier to use. Don’t expand or simplify; that would make things harder in the next step.) c) Differentiate the equation in part (b) with respect to x. Simplify and write in the form (something)(xy� − y)y�� = 0 (This starts out looking horrendous, but simplifies considerably.) d) Show that one solution to the equation in part (c) is x2/3 + y2/3 = L2/3 . What about two other possibilities, namely, those solving y�� = 0 and xy� − y = 0?


View Full Document

MIT 18 01 - Problem Set 4

Documents in this Course
Graphing

Graphing

46 pages

Exam 2

Exam 2

3 pages

Load more
Download Problem Set 4
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Problem Set 4 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Problem Set 4 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?