Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 8.323 Relativistic Quantum Field Theory I Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.8.323 Lecture Notes 2: Particle Production by a C lassical Source, Part II (incomplete),p. 1. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department ������ ����������� ������� ����� ������ � ������� �������� �� � �������� ����� ����� ��� ��� ���������� ���� ��� ���� — ���� ���� ���� ���� ������������ ��������� �� ��������� ������ ���� ��� ���� �������� �� ������������ �������� Equation of motion: ( + m 2)φ(x)= j(x) . (2.1) Initial condition: φ(x)= φin(x) . (2.2) Eqs. (2.1) and (2.2) =⇒ unique solution for Heisenberg operator φ(x). Solution: � φ(x)= φin(x)+ i d4yDR(x − y)j(y) , (2.3) where DR(x − y) is the retarded propagator: x + m 2)DR(x − y)= −iδ(4)(x − y)( (2.4) where DR(x − y)=0 if x 0 <y0 (retarded) . ���� ���� ������������ ��������� �� ��������� ������ ���� ��� ���� –1–� � � � � � � � �� � � 8.323 Lecture Notes 2: Particle Production by a C lassical Source, Part II (incomplete),p. 2. We know that DR(x − y)= θ(x 0 − y 0) 0 |[φin(x) ,φin(y)]| 0 = θ(x 0 − y 0) � d3p 1 e −ip·(x−y) − eip·(x−y) √ 0 2(2π)3 2Epp =Ep = p 2+m(2.5) Note that DR(x − y) is defined by the free wave equation. It can be written in terms of [φin(x) ,φin(y)] as above, or in terms of [φout(x) ,φout(y)], but not in terms of [φ(x) ,φ(y)]. θ(x0 −y0)in DR is hard to deal with, but for x0 ≡ t>t2 we can set θ(x0 −y0)=1. Then d3� � φ(x)= φin(x)+ i d4yj(y) p 1 e −ip·(x−y) − eip·(x−y) . (2.6)(2π)3 2Ep ���� ���� ������������ ��������� �� ��������� ������ ���� ��� ���� –2– Repeating, d3� � φ(x)= φin(x)+ i d4yj(y) p 1 e −ip·(x−y) − eip·(x−y) . (2.6)(2π)3 2Ep Define � ˜(p) ≡ d4 yeip·y j(y) , (2.7) so d3p 1 � −ip·x − ˜ip·x � φ(x)= φin(x)+ i ˜(p)e (−p)e(2π)3 2Ep d3p 1 i −ip·x = � ain(p)+ � ˜(p) e (2π)3 2Ep 2Ep � � � (2.8) + a † (p) − � i ˜(−p) eip·x in2Ep = d3p � 1 � aout(p)e −ipx +h.c. � . (2π)3 2Ep ���� ���� ������������ ��������� �� ��������� ������ ���� ��� ���� –3–� 8.323 Lecture Notes 2: Particle Production by a Classical Source, Part II (incomplete),p. 3. So aout(p)= ain(p)+ i � 2Ep ˜(p) a † out(p)= a † in(p) − i � 2Ep ˜(−p) , (2.9) where ˜(−p)= ˜ ∗ (p) , (2.10) since j(x)is real, and p 0 = � p2 + m2 . (2.11) Thus, only the mass shell component (p0 = � p2 + m2)of ˜(p) results in particle creation. This is just the classical phenomenon of resonance occurring in the quantum field theory setting. ���� ���� ������������ ��������� �� ��������� ������ ���� ��� ���� –4– ������� �������������� ������� �� ��� ��� It is useful to construct a unitary transformation that relates in and out quantities. Remembering that DR(x − y)= θ(x0 − y0) 0 |[φin(x) ,φin(y)]| 0, recall also that [φin(x) ,φin(y)] is a c-number, so 0 |[φin(x) ,φin(y)]| 0 =[φin(x) ,φin(y)].So for x0 ≡ t>t2, φ(x)= φout(x)= φin(x)+ i d4 y[φin(x) ,φin(y)] j(y) . (2.12) If we define � B ≡ d4yj(y) φin(y) , (2.13) then φout(x)= φin(x)+ i[φin(x) ,B] . (2.14) But [φin(x) ,B] is also a c-number, so we can write φout(x)= e −iB φin(x) e iB . (2.15) ���� ���� ������������ ��������� �� ��������� ������ ���� ��� ���� –5–8.323 Lecture Notes 2: Particle Production by a Classical Source, Part II (incomplete),p. 4. Since φout(x)= e −iB φin(x) e iB , (2.15) we know from the uniqueness of the Fourier expansion that aout(p)= e −iB ain(p)e iB . (2.16) We can also verify that this equation is true by using aout(p)= ain(p)+ i � 2Ep ˜(p) (2.9a) with � ain(p) ,a † in(q ) � =(2π)3δ(3)(p − q ) . (2.17) ���� ���� ������������ ��������� �� ��������� ������ ���� ��� ���� –6– ��� S������� Define S ≡ e iB (the ������ S-Matrix) (2.18) Mapping of states: aout(p) |0out =0 S−1 ain(p)S |0out =0 (2.19) =⇒ ain(p) S |0out =0 This implies, up to a phase, the S |0out = |0in. We can redefine the phase of |0out (or |0in)sothat S |0out = |0in . (2.20) ���� ���� ������������ ��������� �� ��������� ������ ���� ��� ���� –7–� � 8.323 Lecture Notes 2: Particle Production by a Classical Source, Part II (incomplete),p. 5. On one particle states, S |pout = Sa† out(p) |0out = Sa† out(p)S−1 � �� � a † in(p) S |0out � �� � |0in = |pin (2.21) In general, we could show that S � �p1 ...pN,out � = � �p1 ...pN,in � . (2.22) ���� ���� ������������ ��������� �� ��������� ������ ���� ��� ���� –8– ������ �������� �� S We know that � i d4yj(y) φin(y) S = e iB


View Full Document

MIT 8 323 - Lecture Notes

Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?