PSU CHEM 408 - Intermolecular Interactions

Unformatted text preview:

3/22/2005 CHEM 408 - Sp05L10 - 1Intermolecular InteractionsIntermolecular Interactions• the fact that all molecules aggregate at low enough T reflects the universal presence of attractive interactions between molecules or between parts of a single molecule• estimate the strength of intermolecular attractions á la Stone* using only the boiling point, Tb: εzNRTHAbvap2110 ≅≅∆bBTkz20≅εenthalpy of vaporization# neighborsTrouton’s ruleAvog. #which predicts a pairinteraction strength εof:System Tb / K z (20Tb/z) / K εobs/kB / K He 4.2 12 7 11 Xe 166 12 277 281 CH4 111.5 12 186 144 C6H6 352.3 12 587 ~428 H2O 373.2 4 1866 ~2400 Some Values of ε*A. J. Stone, The Theory of Intermolecular Forces (Oxford, 1996)3/22/2005 CHEM 408 - Sp05L10 - 2• intermolecular interactions can be approximately grouped into four categories:3. short-range repulsion (+)- interactions due to the overlap of filled electronic orbitals & atomic cores1. electrostatic (+/-) - interactions between the permanent charge distributions of molecules (i.e. dipole-dipole, dipole-quadrupole, etc.)4. inductive (-) - interactions between the permanent charge distribution of one molecule and the electronic polarizability of a second molecule (e.g. dipole-induced dipole, etc.)2. dispersion (-) - interactions due to the instantaneous correlations between the electronic motions in two molecules3/22/2005 CHEM 408 - Sp05L10 - 31. Electrostatic Interactions; Multipole Expansion⎟⎟⎠⎞⎜⎜⎝⎛−++++=⎟⎟⎠⎞⎜⎜⎝⎛+=θθπεπεφcos2cos24141)(2222212121022110rzzrqrzzrqrqrqBelBAq1q2r1 r2rθ⎟⎟⎠⎞⎜⎜⎝⎛+++−++≅ ...2)()(41322221121122210rzqzqrzqzqrqqπε• Leech considers the electrical potential φelat a distant point B that is created by a pair of charges near A:z⎟⎟⎠⎞⎜⎜⎝⎛+−Θ++= ...2)1cos3(cos413220rrrqθθµπε21, zzr >z1z2• the last expression shows that φel(B) can be expressed in terms of the multipole moments of the A charge distribution: the net charge q, the dipole moment µ, the dipole moment, the quadrupole moment Θ, etc.3/22/2005 CHEM 408 - Sp05L10 - 4BA• more generally, for a distribution of charge due to a molecule centered at A:RraRrr−ar∑−=aaAelaRqB||41)(0rπεφ...15131+Ω−+−≅αβγαβγαβαβααµµTTTTqaRrr>where α, β, γare cartesian coordinates (x, y, z), repeated indicies imply summation, and the Ts are the spatial derivatives:νβαναβπεRRRTn∂∂∂∂∂∂= ...410)(...041πε=TyxTxy∂∂∂∂=041πεi. e.etc.• this expansion enables the electrostatic interaction between twomolecules A and B to be expressed:...+∂∂∂∂∂∂Ω+∂∂∂∂Θ+∂∂+=AelBAelBAelBAelBABelqVφγβαφβαφαµφαβγαβα1stmoment of B charge1stderiv. of el. potential from A baRrrr,>no overlap of A and B charge dists.3/22/2005 CHEM 408 - Sp05L10 - 5∑−=Θaaaaaq charges22123)(αββααβδ∑++−=Ωaaaaaaaaaq charges22125)}({αβγαγββγαγβααβγδδδquadrupole momentoctopole moment• the multipole moments of a molecule are given by:∑=aaqq charges∑=aaaq chargesααµchargedipole moment∫∑== rxdrxqaaaxrr)(ρµrdrzrrrzqaaaazzrr∫∑−=−=Θ )()()(2212232221223ρ• For a continuous charge distribution ρ(r) the summations in these equations are simply replaced by integrals. For example:∫∑==Θ rxydryxqaaaaxyrr)(2323ρ)or ,,( zyx=α•“2n-poles”:+q (n=0)µ(n=1)++--+-++++----Θ(n=2) Ω(n=3)3/22/2005 CHEM 408 - Sp05L10 - 60.40.40.40.40.40.40.40.40.40.60.60.60.60.60.60.80.80.80.80.81.01.01.01.01.01.01.01.01.01.00.60.4-3 -2 -1 0 1 2 3-3-2-10123-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.00.0-0.2-0.4-0.60.2-1.0-0.80.20.4-1.0-1.00.40.60.80.60.81.01.01.01.01.0-1.00.80.60.40.20.0-0.2-0.4-0.6-0.8-1.0-1.00.40.40.20.20.00.0-3 -2 -1 0 1 2 3-3-2-10123-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.00.00.20.2-0.2-0.20.40.4-0.4-0.40.6-0.60.8-0.81.0-1.01.01.0-1.0-1.00.6-0.6-3 -2 -1 0 1 2 3-3-2-10123-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Electrical Potentials of Multipoles n=0-2qΘµrq1∝φ2cosrzθφµ∝3231cos3rzz−∝Θθφ3/22/2005 CHEM 408 - Sp05L10 - 7rdrrzzrr)1cos()(2232−=Θ∫θρ• some examples of quadrupole moments of molecules Fig. 2.1 from A. J. Stone, The Theory of Intermolecular Forces(Oxford, 1996)• some important units:charge q: 1e = 1.6022×10-19 C dipole moment µ: 1 ea0= 8.478×10-30 C m = 2.5418 Dquadrupole moment Θ: 1 ea02= 4.487×10-40 C m2= 1.354 D Ånode-3.3+1.8+5.6-6.73/22/2005 CHEM 408 - Sp05L10 - 8• some explicit forms for interaction energy: }cossinsincoscos2{430ϕθθθθπεµµµµBABABArV −=}cos2sinsin)1cos3({cos234240ϕθθθθπεµµBABABArV −−Θ=Θ)}cos2sinsin-coscos2(4 coscos15cos5cos51{434222250ϕθθθθθθθθπεµBABABABABArV+−−−ΘΘ=Θ• quadrupole forms assume a linear quadrupole with the symmetry axis chosen as z with:Θ−=Θ=ΘΘ≡Θ21 and yyxxzz• the factor: 4πε= 1.11265×10-10 C2 N-1m-2is appropriate for the SI unit systemfigure.in ;, :Note2121ϕϕϕθθθθ−===BA3/22/2005 CHEM 408 - Sp05L10 - 92. Dispersion Interactions• also “London” dispersion forces after F. London (1930) who first gave QM explanation• long-range attraction, universally present• dominant in nonpolar systems like He, Xe, CH4, CCl4…• due to correlated electron motions on two molecules• understand using Drude model of harmonically bound es: +--+charge e, force constant k, frequency ω()622041)4(43rkerVπεωh−≅∞→r• London formula is:()6212121123rIIIIrV+−≅ααmolecules 1 & 2, α= polarizability, I = ionization energy• leading term in expansion in 1/r:()...10108866+++≅rCrCrCrV3/22/2005 CHEM 408 - Sp05L10 - 103. Short-Range Repulsion• also called “exchange-repulsion” or just “exchange” energy• 2 effects: electron exchange between two molecules (-) and Pauli repulsion between e of like spin (+) • net is repulsive and of exponential form (like overlap of Ψ)Fig. 6.2 from A. J. Stone, The Theory of Intermolecular Forces (Oxford, 1996)H-HArArH-H())exp( rArVsrβ−≅3/22/2005 CHEM 408 - Sp05L10 - 114. Inductive Interactions • result from permanent charge moments on one molecule inducing an electronic polarization in another molecule• attractive Fig. 4.1 from A. J. Stone, The Theory of Intermolecular Forces (Oxford, 1996)()42021)4( rqrVqπεαα−=()62rrVαµµα−∝()82rrVααΘ−∝Θinduction is non-additive:3/22/2005 CHEM 408 - Sp05L10 - 12• although the interaction


View Full Document

PSU CHEM 408 - Intermolecular Interactions

Documents in this Course
Load more
Download Intermolecular Interactions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Intermolecular Interactions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Intermolecular Interactions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?