DOC PREVIEW
CU-Boulder PHYS 2020 - Exam III Review

This preview shows page 1-2 out of 7 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Exam III review.RII-1 How many ohms in a coulomb?A) one gazillion B) one coullion C) 17 D) None of theseAnswer: None of these. Ohm is unit of resistance. Coulomb is unit of charge.RII-2 Does the capacitance of a capacitor depend on the charge Q on the capacitor?A) Yes B) No C) Depends on the type of capacitor.Answer: No. The capacitance of a capacitor is fixed by its size and shape. C = Q / V is a constant ratio for a given capacitor: if Q increases, V increases so that the ration Q / V remains constant.RII-3 A capacitor is attached to a battery which maintains a constant voltage V across the capacitor plates. While the battery is attached, the plates are moved further apart. The energy stored in the capacitor..A) increased.B) decreased.C) remained constant.Hint: U = (1/2)QV = (1/2)Q2/C = (1/2) CV2 Answer: V is fixed by the battery. Q is not fixed, since charge can go on or off the plates through the attached wires. Use U = (1/2) CV2. C decreases, V constant, so U decreases. (Both the battery and the external agent do work, so work arguments are not easy to apply in this case.)VRII-4 A charged capacitor is isolated (so no charge can get on or off). The plates of the capacitorare slowly pulled apart. After the plates are pulled apart a bit, the electric field between the plates A) increased B) decreased C) remained constantThe voltage difference between the plates..A) increased B) decreased C) remained constantThe capacitance ..A) increased B) decreased C) remained constantAnswers: The E-field stays constant, because E due to large plane of charge is constant, independent of distance from plane.The voltage difference increases since V = E d (E is constant, d increases)The capacitance decreased. We can see this either from C = Q / V (Q stayed constant, V increases) or from C =  A / d (d increased)RII-5 A parallel-plate capacitor has square plates of edge length L, separated by a distance d. A second capacitor is made with L doubled and d decreased by a factor of 2. By what factor is the capacitance of the new capacitor increased?A) 1 B) 2 C) 4 D) 16 E) None of theseAnswer: 2. C =  A / d . A increased by factor of 4, so ratio A / d increased by factor of 2.L d LRII-6 A copper wire and an aluminum wire both have the same dimensions (same length, same cross-sectional area). Which one statement is true?A) Both wires have the same resistance R and the same resistivity .B) The wires have different resistances and different resistivities.C) The wires have the same resistance but different resistivities.D) The wires have different resistances but the same resistivity.Answer: The wires have different resistances and different resistivities. R =  L / A Different materials have different resistivity  . Same L, same A, different 's, so different R'sRII-7 Which has higher resistance ? A) 100 W bulb B) 60 W bulb Hint: P = IV = I2R = V2/RAnswer: 60 W bulb has higher R. All light bulbs are meant to be used at constant voltage V = 120 VAC. So use P = V2 / R. RII-8 Consider the following circuit containing three ordinary household light bulbs, a 100W light bulb, a 60W bulb, and a 40W bulb. Which one statement is true?A) The 100W bulb will be brightest.B) The 60W bulb will be brightest.C) The 40W bulb will be brightest.D) All the light bulbs glow with the same brightness.Answer: the 40W bulb is brightest! (Since it has the largest R). In comparing the power (or brightness) of two light bulbs, you must first be clear whether the current or the voltage is the same for the two. It makes all the difference. If the two bulbs are in series, then the current is the same, and according to P = I2 R , the higher resistance bulb has more power, and is brighter. But if the bulbs are in parallel, then the voltage is the same, and then according to P = V2 /R, the larger resistance bulb has less power, and is dimmer.40W60W100WRII-9 A 600W hairdryer is attached to 120VAC circuit. What is the peak current through the hairdryer (to within 5%)?A) 10A B) 7A C) 5AHINT: P = IV = I2R = V2/RAnswer: 7A. Use P = I V, (works OK with rms values and Pavg). Irms=P/V = 600/120 = 5A, Ipeak =(2)1/2 Irms = 7A. RII-10 The voltage between points a and b in thecircuit shown is measured with an idealvoltmeter. What does the voltmeter read? Hint: Recall that an ideal voltmeter has infiniteinternal resistance.A) V/2 B) V/3C) V/4 D) zero E) VAnswer: A tough one! The answer is V/2. The current thru the voltmeter is (nearly) zero [since it has (nearly) infinite resistance]. So no current flows through the R in the upper right. K's voltage law says the voltage V is split evenly between the two equal resistances R.V R a b R RRII-11 Consider the circuit below. What is the total resistance which the battery sees?A) 1 B) 2 C) 0.5 D) 0.25 In the circuit above, the resistor R2 is increased to 5. What happens to the current through fromthe battery?A) increases B) decreases C) remains constantAnswers: The total resistance is 1 ohm. When any of the R's is increased, the battery current decreases, since the total resistance seen by the battery increases.RII-12 In the circuit below which resistors must have the same current flowing through them? Do not assume that the resistors are identical.A) R2 / R5 onlyB) R3/R4 onlyC) R2 / R5 and R3/R4 onlyD) R1/ R2 / R5 onlyWhich resistors must have the same voltage drop?A) R2 / R5 only B) R3/R4 onlyC) R2 / R5 and R3/R4 only D) R1/ R2 / R5 onlyAnswers: Only R2 and R5 areguaranteed to have the same current. Only R3 and R4 are guaranteedto have the same voltage. R2 =2 1 R1 =2 2 1V I=? R4 R2 R1 R3 1V R5RII-13 A charged particle is orbiting in a uniform B-field in the sense shown.Is the particle positively or negatively charged?A) positiveB) negativeC) impossible to tell/don't knowAnswer: The direction of acceleration and net force must be toward the center of the circle. For a negative particle, the force on particle is toward the center of the circle.RII-14 A coil of wire carrying current I can rotate freely about an axis in a magnetic field. If released from rest in the position shown, which way does it rotate?A) right side will move out of pageB) left side will move out of page.C) loop will not rotate at allAnswer: Right side will move out of page. Use right hand rule. Force on left side of loop is into page; force on right side of loop is out of page.B(in) B axis IPOTENTIAL EXAM QUESTIONS:1.


View Full Document

CU-Boulder PHYS 2020 - Exam III Review

Documents in this Course
Magnetism

Magnetism

17 pages

Lab #4

Lab #4

3 pages

Lab 9

Lab 9

6 pages

Lab 4

Lab 4

8 pages

Load more
Download Exam III Review
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Exam III Review and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Exam III Review 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?