DOC PREVIEW
CSUN SED 600 - Examining the Literacy Component of Science Literacy

This preview shows page 1 out of 3 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 3 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 3 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Afrodita Fuentes SED 600 03/07/07Current Event #1Examining the Literacy Component of ScienceLiteracy: 25 years of language arts and scienceresearch Summary This article suggests that science literacy embodies two senses. The first is the fundamental sense, which involves being a learned person and the abilities to speak, read, and write in and about science. The second sense is the derived sense and involves knowing the body of knowledge in science. Most of the information presented here is about the history of science literacy in the past twenty-five years. In the first half of this period the language of science was believed to be mathematics. Later, it was recognized that the language of science involved speaking, reading, writing, and listening. According to the authors, a scientific literate person is one who distinguishes experts from the uninformed, theory from dogma, data from myth and folklore, science from pseudo-science, evidence from propaganda, and facts from fiction. One must recognize that science has its limitations and that it uses sufficient evidence to support or reject claims. A scientific learned individual knows how to analyze and process data, find many solutions to a single problem, and that science has personal, social, political, judicial, ethical, and moral dimension. Traditionally, oral language in the classroom was used by teachers to ask questions and evaluate students while in more recent years questions are used to facilitate and scaffold student learning. Reading used to emphasize textbooks and students’ readings skills. Now reading is encouraged to be an interaction between the text and the reader and forces the reader to have a metacognitive awareness of his own learning. Writing was used as an evaluation tool to look for knowledge and grammar errors. Now writing is encouraged to include a purpose, content knowledge, and students’ thinking, negotiating, reacting, reflecting, and revising skills. In addition, writing is used to learn. It has been shown that writing provides opportunities to develop vocabulary, patterns of argumentation, and higher-order thinking. Nowadays, the constructivist model is well-supported for the teaching ofscience. In this model, students are at the center of learning stage and have the ability to speak more through inquiry-based activities and the access of prior knowledge which includes cultural background and prior experience with the content. Studies are on their way to aid in the change of science teaching to take into account the vital necessity of science literacy. AnalysisA weakness of this article was the lengthy and convoluted explanations about certain sections, such as in the current trends of reading and writing. Itwas a bit difficult to follow. Since this article presented the history of science literacy for twenty-five years, the information was great in amount. This article had many and reliable references. It also provided clear examples of what a literate person should be able to do. It also took into account the multiethnic society in which we live and the international relationships we maintain as driving force to become scientific literate and as a driving force toscientifically educate the our citizens. To increase science literacy in the classroom, a number of techniques were suggested, including techniques that invited the access of prior knowledge that comes from formal education and everyday experience molded by culture and geography. The authors of this article encourage recognize the existence of model teachers and classrooms in scientific literacy. At the same time they encourage the use of research to document this work, and make sure researchin leading or encouraging practice of effective findings for science literacy. They also recommend teacher education programs to present new teachers with techniques to increase science literacy in the classroom as well as provide these teachers with opportunities to implement and practice such techniques in the classroom. They urge more seasoned teachers to infuse these strategies in their lessons. I also agree in that the constructivist model of education uses the inquiry-based and student-centered approaches; these approaches if done correctly should increase student curiosity and interest in seeking knowledge about science in their everyday lives. Reflection In an age of rapid global change, we (all citizens, especially scientists) must learn quickly and communicate effectively. Unfortunately, many people are not well educated to meet the demands this rapid change. Global change has been the very result of quick advances in science and technology. Those scientist that contributed greatly to this global change, obviously communicated effectively. The way scientists communicate needs to be sensitive to the audience. Sometimes scientists communicate to other scientists; in this case the language is more academic and perhaps persuasive.Scientists that communicate with individuals out of the field of science (for financial support and political support) most likely communicate in less scientific language. In a multiethnic society science is communicated in a variety of ways forthe regular person: in TV, in newspapers, in entertainment, in medical centers,and others. The individuals presenting science are not necessary experts and are not necessarily altruistic individuals. This science may be misleading and misinterpreted, that is why the receiver of such science must be scientific literate. To make every citizen of this world literate is a great challenge, and it is not being met. To make every citizen of this country is still a great job and it is even greater to do it without the proper policies that govern our educational system. In addition, the authors point out that educators are not receiving proper training to implement strategies that produce a scientificliterate student. This means that educators must do their own learning or use their common sense to embed literacy in their teaching. I attended a science literacy network a few years ago, where we learnedto use a few techniques to use science textbooks. I believe this was mostly to decode the material in textbooks and to comprehend the material. But scientific literacy is not just that; it is comprehending that science is all over our environment every minute and that we enjoy the commodities (a rich abundance and variety of foods,


View Full Document

CSUN SED 600 - Examining the Literacy Component of Science Literacy

Download Examining the Literacy Component of Science Literacy
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Examining the Literacy Component of Science Literacy and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Examining the Literacy Component of Science Literacy 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?