Unformatted text preview:

� �� � � � � � � � Lecture 12 8.251 Spring 2007 Lecture 12 - Topics • The σ- parameterization • Equations of motion and Virasoro constraints • General motion for open strings • Rotating open string Reading: Chapter 7 So far: X0(τ, σ) = ct = cτ ∂X�∂X�∂X�∂�x2 v = ⊥ ∂t − ∂t · ∂s ∂s � ds v2 ( ˙x x�)2 x2x�2 = c ⊥· − ˙dσ 1 − c2 ∂�x ∂�x x˙ x� = · ∂t · ∂s � �2 � �2 (x�)2 = ∂�x = ds ∂σ dσ � �2 ( ˙x)2 = −c 2 + ∂�x ∂t |d�x| = ds ∂�x ∂�x = 0 ∂t · ∂σ x˙ x� = 0 · ∂�x v = ⊥ ∂t T0 −(x�)2 ∂xµ T0 ds/dσ ∂xµ PT µ = − c √. . . ∂τ = c � 1 − v2/c2 ∂τ x)2 ∂xµ σµ T0 −( ˙∂σ T0 1 − v2/c2 ∂xµ �σ)P = − c √. . . = ds/dσ ∂σ = (0, P∂Pτ µ + ∂Pσµ = 0 ∂τ ∂σ 1� � � � � � � � � Lecture 12 8.251 Spring 2007 µ = 0: ∂Pτ 0 = 0 (Pσ0 = 0) ∂t ∂ T0 ds/dσ� = 0 ∂τ c 1 − v2/c2 Consider a constant, fixed dσ d T0ds � = 0 dt 1 − v2/c2 ∂Pτ µ + ∂Pσµ = 0 ∂t ∂σ T0 � ds/dσ ∂2�x ∂ 1 − v2/c2 ∂�x = 0 c 1 − v2/c2 ∂t2 − T0 ∂σ ds/dσ ∂σ Wouldn’t it be nice if the 1 − v2/c2 disappeared? Then we would have a nice wave equation. Let’s fix magnitude of σ s.t. ds/dσ/ 1 − v2/c2 = 1 ds dσ = � 1 − vc2 2 1 T0ds 1 dσ = T0 √. . . = T0 dEnergy 2� � Lecture 12 8.251 Spring 2007 E σ 0, σ1 = T0 Note σ not equal to the length - more convenient this way, proportional to en-ergy. Our cleverness so far: Static gauge Time on world = time on worldsheet Keep lines orthogonal Set σ proportional to energy � �2 � �2 � �2ds v2 ∂x 1 ∂�x= 1 − + = 1 dσ c2 ⇒ ∂σ c2 ∂t Recall: ∂�x ∂�x = 0 ∂t · ∂σ These two boxed equations are the parameterization conditions. Now wave equation is simple: ∂2�x 1 ∂2�x ∂σ2 − c2 ∂t2 = 0 For normal non-rel. string, get wave equation. For new rel. string, get wave equation and 2 parameterization conditions. Combine the equations: � �2∂�x 1 ∂�x ∂σ ± c ∂t = 1 Now: T0 ∂xµ Pτ µ = c2 ∂t ∂xµ Pσµ = −T0 ∂σ Nice and simple. 3Lecture 12 8.251 Spring 2007 Open String Motion Totally Free 1 X(t, σ) = (F�(ct + σ) + G�(ct − σ))2 This is all the wave equation tell you. x: position of string. Now BCs: ∂�x = 0 ∂σ σ = 0, σ1 ∂�x 1 = (F��(ct + σ) + G��(ct − σ))∂σ 2 Primes indicate derivative with respect to σ BC 1: ∂�x = 0 ∂σ σ=0 F��(ct) + G��(ct) = 0 F��(u) = G��(u) G�(u) + �a0⇒ ⇒ Back to X�= 1 (F�(ct + σ) + F�(ct − σ) + �a0). Absorb �a0 into F�.2 1 X�= (F�(ct + σ) + F�(ct − σ))2 �x(t, 0) = F�(ct). F tells you the motion of one endpoint. BC 2: ∂�x = 0 ∂σ σ=σ1 F��(ct + σ1) = F��(ct − σ1) F��(u + 2σ1) = F��(u) F � periodic. F�(u + 2σ1) = F�(u) + 2σ1 �v0 c ∂�x c(t, σ) = (F��(ct + σ) + F��(ct − σ))∂t 2 Let t t + 2σc 1 then velocity doesn’t change! (since F��(u + 2σ1) = F��(u)))→ 4Lecture 12 8.251 Spring 2007 X(t +2σ1 , σ) = 1(F (ct + 2σ1 + σ) + F�(ct + 2σ1 − σ)) = �x(t, σ) + 2σ1 �v0 c 2 c So �v0 = average velocity of any fixed-σ point on the string. This explanation is a bit different than the book’s. ∂�x 1 ∂�x + = F��(ct + σ)∂σ c ∂t ∂�x 1 ∂�x ∂σ − c ∂t = −F��(ct − σ) These yield: ∂x 1 ∂x ∂σ ± c ∂t = ±F �(ct ± σ) |F��(u)| = 1 | dF�du (u) | = 1 u: length parameter on curve |dF�| = du Example: Most famous example. Open string doing circular motion. 5Lecture 12 8.251 Spring 2007 l: length of string X�(t, σ = 0) = l (cos ωt, sin ωt)2 Recall: X�(t, 0) = F�(ct) ⇒ F (u) = 2 l (cos(ωu/c), sin(ωu/c)) F��(u) = l ω (− sin(ωu/c), cos(ωu/c))2 c ωl Unit vector: ω l = 1 = c c 2 ⇒ 2 String endpoints move at speed of light! Periodicity of F��: ω(2cσ1) = m(2π) m = 1: 1 l x(0, σ) = 2(F (σ) + F (−σ)) = 2(cos(πmσ/σ1), 0) ω2σ1 = 2π c c σ l = = ω π 2 E π σ1 = E = (lT0)T0 ⇒ 2 String has π 2 more energy since rotating.


View Full Document

MIT 8 251 - LECTURE NOTES

Download LECTURE NOTES
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view LECTURE NOTES and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view LECTURE NOTES 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?