Unformatted text preview:

1•Transformers and Impedance Matching•Transmission Lines•Fourier Waveforms•Transformers- VACPrimaryV2/2 center tapV1N1SecondaryV2N2V1/V2 = N1/N2 voltage ratio = winding ratioI1 V1 = I2 V2 conservation of energyI1/I2 = V2/V1 = N2/N1V=I Z Ohms AC LawZ1/Z2 = (V1/I1) / (V2/I2) =(I2/I1)(V1/V2)Z1/Z2 =(N1/N2)2 Impedance MatchingTransformer core enhances performance L~µFe(ω) µo x LairChapter 4 - AC Circuits IIFe core2Impedance matching - theoryP = I V =I2 R = [V/(r+R)]2 RMaximum power is delivered atwhat value of R?dP/dR= -2V2R(r+R)-3+V2/(r+R)-2 = 0-2V2R(r+R)-3+V2/(r+R)-2 =0R/(r+R)=1/2R=1/2r+1/2R --> R=r !Maximum power is transferredwhen Output impedance matchesInput impedance!riRVOutput impedanceInputimpedance3Impedance matching - w transformerZs=4900ΩZL=100Ω28VAC28VACWithout Transformeri = 28/(4900+100) = 5.6mAVL = (100/5000)28V =0.56VPL = i V2 = 3.1 mWZSource=4900ΩZLoad=100Ωii1i2With TransformerZ1/Z2 =(N1/N2)2N1/N2 = sqrt(4900/100)=7V2= (1/7)V1= (1/7) 28 = 4VI2 = 4V/100Ω = .040AP2 = (.040A)4V= 160mW !I1 = i2(N2/N1)=.0057AP1= (.0057A)28V = 160mW4Twisted pair (Z~100Ω)Parallel conductor (Z~90Ω)CoAxial (Z~50-100Ω) Zparallel=µµo!2""o# $ % & ' ( 1/ 2ln2da# $ % & ' ( Zcoax=µµo!2""o# $ % & ' ( 1/ 2lnba# $ % & ' ( 2d wire spacing2a wire diameter2d shield diameterhttp://www.eeweb.com/toolbox/wire-over-plane-inductance/Transmission Lines5Transmission Lines•We often use a cable or transmission line to transfer AC signals.•The cable can be modeled as a series L=L/l and parallelC=C/l to ground. Sometimes a series R=R/l is also included.•Since Vab ~ 1 for low frequencies (ω -> 0) generally signal propagation is only aconcern at higher frequency.•Resistance of the line will attenuate the signal at all frequencies!L/lC/lVoutVinabvVab=1 /!C(1 /!C)2+ (!L)2Vin!=!11 + (!2LC)2Vin!!!!!!!!!!!!Vout=11 + (!2LC)2"#$%&'NVin6Transmission Line Theory(1) Z1= R1/ ! + i!L / !!Z2= R2/ ! + i!C / !( ) 1)!!dV / dx!!= !!I ! Z1!!!!!!"!!!!!d2Vdx2= !! Z1!dIdx!=Z1Z2V !!!!!"!!!! !V (x) =! A!e!Z1Z2x!!+ !! B!e+Z1Z2x!!!!!!!!!!!!!!!!!2)!!!dI / dx = !VZ2!!!!!!"!!!!!!!!d2Idx2= !! Z1!dVdx!=Z1Z2I !!!!!!!!!"!!!!! I(x) =!C !e!Z1Z2x!!!!! D!e+Z1Z2x!!!! By!u sin g!1)!! I =!!1Z1dVdx!!!!"!!!!!! I(x) =!1Z1Z2(A!e!Z1Z2x!!!!! B!e+Z1Z2x)!!!where!!ZC= Z1Z2!!characteristic!impedance3)! Assume!we !ter min ate!the !transmission!at !! x = L!!line!with! ZC.!!!!!V(L) = ! A!e!Z1Z2L!!+ !! B!e+Z1Z2L!!and !!!!! I(L) =1ZC(!A!e!Z1Z2L!!!!! B!e+Z1Z2L)!!!!!!!!!Z(L) =V (L)I(L)!!= ZC!!!"!! B = 0!!!4)!!V(0) = VIN!!!!!!!!!!!!!!!"!!!!!! !V (x) =!VIN!e!Z1Z2x!and !!! I(x) =VINZC!e!Z1Z2x!!!!!!!!"!!!! ! ZIN=!V (0)I(0)=!ZCInput !Im pedance! = ! ZC!independent !of ! L!!!! "### $###I !!Z1!!!!!!!!!!dx!!!!!!!!!"VINI !!dIV ! dVdIZ2…………ZCVOUTL7•The characteristic impedance of a transmission line is•The input impedance of a transmission line is independent of L terminated if terminated in characteristic impedance is ZC. •The signal speed of propagation Transmission Line Theory(2)ZCZCharicteristic= ZC= Z1Z2 v = 1 / L'C' = c /µ!= c / n8Speed of Signal Propagation Vab=1 /!C(1 /!C)2+ (!L)2Vin!=!11 + (!2LC)2Vin!!!!!!!!!!!!Vout=11 + (!2LC)2"#$%&'NVinThe LC!circuit rings when !2LC = 1 !or != 1 / LC !!This is the optimum condition for signal transport.U sin g!the!ringing! period!as!!T = LC != 1 / LC !!!!!(!!!! !1 / v = LCT!/ l = (L / l)(C / l) v = 1 / L'C' = c /µ)!=!c / nL/lC/l VoutVinv9Reflection CoefficientIf a transmission line of characteristic impedance Zc is terminated with impedanceZ Zc a reflected signal will develop!K = A/Ao = [(Z-Zc)/(Z+Zc)] reflection coef (If Z=Zo then no reflection!)If T ~ 2(L/v) = transit time for 2L reflection then signal cancellation likely.If T<<To then no termination necessary.If T ~ To then cancellation or distortion and termination necessary.f =1/To =signal frequencyVoutLVinToWill a 100 MHz signal traveling down a 2 m RG58/U 50Ω cable need termination?To = 10 ns T= [2(2m)/2x108 m/s] = 20 ns : Yes cable should be terminated in50Ω!T!10Complex Signal and Fourier Decomposition V (t) =Ao2DC!+ An!sin(2n!!t / T )"!+ Bn!cos(2n!!t / T )"AC" #$$$$$$$$ %$$$$$$$$!!!!!!!!!#n= 2n!fFourier – Any!waveform!V(t)!can!be!decomposed!in!to!sin e!and!cosine!waves.Sawtooth!WaveAn=1n!!!n = 1, 3, 5,....!odd !!Bn= 0Square !WaveAn=4n!!!n = 1, 3, 5,....!oddBn= 011Fourier Decomposition- FFT• Fast Fourier Transform (FFT) is an algorithm to compute a discrete Fourier transform. This signal P(t) is decomposed in to a high frequency and low frequency P(ν). T-hiT-lo• Noise and signal can be separated in the frequency


View Full Document

OLEMISS PHYS 321 - AC Circuits II

Download AC Circuits II
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view AC Circuits II and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view AC Circuits II 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?