DOC PREVIEW
Stanford EE 340 - Syllabus

This preview shows page 1 out of 4 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

EE340: Optical micro- and nano-cavitiesInstructor: Jelena VuckovicFall 2012Syllabus (tentative)1 EE340: Optical micro- and nano-cavities Instructor: Jelena Vuckovic Fall 2012 Syllabus (tentative) Part 1 Introduction to optical resonators • Lossless hollow rectangular resonator • Losses in a resonator. Quality (Q) factor of a resonator • Finesse, free-spectral range, and mode volume of a resonator References: 1. Ramo, Whinnery and Van Duzer, Fields and waves in communication electronics, 3rd edition, chapter 10 2. Jackson, Classical electrodynamics, 2nd edition, sections 8.7 and 8.8 Part 2 (1 hw) Mechanisms for confinement of light • Total internal reflection (TIR) • Electromagnetic propagation in periodic media o Periodic media: Floquet (Bloch) theorem, Bloch waves, and band structure o Distributed Bragg reflection (DBR) o Photonic crystals, photonic band gap References: 1. Born and Wolf, Principles of optics, 7th edition, section 1.5 2. Yariv and Yeh, Optical waves in crystals, chapter 6 3. Joannopoulos et. al, Photonic crystals Part 3 (1 hw) Electromagnetic field quantization in resonators • Introduction: a brief review of classical mechanics, rules for quantization, quantum harmonic oscillator, and Maxwell’s equations. • Normal mode expansion of the electromagnetic field in: o Lossless medium with a uniform dielectric constant o Lossless medium with a non-uniform dielectric constant o Resonator (cavity) • Electromagnetic field quantization in: o Lossless 1D resonator with a uniform dielectric constant o Free space o Lossless medium with a non-uniform dielectric constant o Resonator (cavity)  Very large Q-factor case: treating resonator as lossless  Lossy resonator: quantum Langevin equation Useful references:2 1. M. O. Scully and M. S. Zubairy, Quantum optics, Cambridge University Press 1997 (chapter 1) 2. R. Loudon, The quantum theory of light, Oxford Science Publications, 3rd edition (chapter 4) 3. R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media”, Physical Review A, vol. 43, pp. 467-491 (1991) 4. Y. Yamamoto and A. Imamoglu, Mesoscopic quantum optics, Wiley and sons, 1999 (chapter 7) Part 4 (1 hw) Introduction to cavity quantum electrodynamics (cavity QED) • Semi-classical treatment of the atom - electromagnetic field interaction: the interaction Hamiltonian in the dipole approximation • Quantum-mechanical treatment of the atom - electromagnetic field interaction: Jaynes-Cummings Hamiltonian • Strong and weak coupling regimes of the cavity QED o Strong coupling regime • Rabi oscillation • Normal mode splitting; dressed and bare states. o Weak coupling regime • Spontaneous emission rate in free space: Einstein’s A coefficient • Spontaneous emission rate in a medium with a uniform dielectric constant • Modification of the density of photon states in a cavity • Spontaneous emission rate in a cavity; Purcell effect • Spontaneous emission coupling factor and relation to laser threshold Useful references: 1. S. Haroche and D. Kleppner, “Cavity quantum electrodynamics”, Physics Today, January 1989, pp. 24-30 2. K. Vahala, “Optical microcavities”, Nature, vol. 424, pp. 839-846 (Aug. 14 2003) 3. H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics”, in Cavity Quantum Electrodynamics, edited by P. Berman, pp. 203-267 (Academic Press 1994) 4. Y. Yamamoto and A. Imamoglu, Mesoscopic quantum optics, Wiley and sons, 1999 (chapter 6) 5. M. O. Scully and M. S. Zubairy, Quantum optics, Cambridge University Press 1997 (chapters 6, 9) 6. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science, vol. 298, pp. 1372-1377 (2002). Part 5 (~2 hws) Types of optical microcavities • Fabry-Perot resonators • Microcavities employing only TIR (whispering gallery resonators) o Microdisk o Microring o Microsphere o Microtorus3 • Microcavities employing DBR combined with TIR o DBR micropost (micro-pillar) o Planar photonic crystal microcavities (cavities in two-dimensional photonic crystals of finite depth) • Microcavities employing only DBR o Three-dimensional photonic crystal resonators • Plasmonic cavities References (incomplete) 1. K. Vahala, “Optical microcavities”, Nature, vol. 424, pp. 839-846 (Aug. 14 2003) 2. Y. Yamamoto and R. Slusher, “Optical processes in microcavities,” Physics Today, June 1993, pp. 66-73. 3. C.J. Hood, T.W. Lynn, A.C. Doherty, A.S. parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science, vol. 287, No. 25, pp. 1447-1453 (2000). 4. Lord Rayleigh, “The Problem of the Whispering gallery”, in Scientific papers, vol. 5, pp. 617-620, Cambridge University, Cambridge, England 1912. Also published in the Philosophical magazine, vol. XX, pp. 1001-10004 (1910). 5. Larry Coldren and Scott Corzine, Diode lasers and photonic integrated circuits, Wiley 1995. 6. S. L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” Applied Physics Letters, vol. 60, pp. 289-291 (January 1992). 7. N.C. Frateschi and A.F.J.Levi, “The spectrum of microdisk lasers,” Journal of Applied Physics, vol. 80, no. 2, pp. 644-653 (1996) 8. B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Applied Physics Letters, Vol. 75, pp. 1908-1910 (1999) 9. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu “A Quantum Dot Single-Photon Turnstile Device”, Science vol.22, No. 290, pp. 2282-2285 (2000) 10. K. Djordjev, S.J. Choi, and P.D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photonics Technology Letters, vol. 14, pp. 828-830 (2002). 11. P. Rabiei, W.H. Steier, Z. Chang, and L.R. Dalton “Polymer micro-ring filters and modulators,” J. of Lightwave Technology, vol. 20, pp. 1968-1975 (2002). 12. B.E. Little et al, “Vertically coupled glass microring resonator channel dropping filtes,” IEEE Photonic Technology Letters, vol. 11, pp. 215-217 (1999). 13. V.B. Braginsky, M. L. Gorodetsky, and V.S. Ilchenko, “Quality factor and nonlinear optical properties of whispering gallery modes,” Phys. Lett. A, vol. 137, pp. 393-397 (1989). 14. M. L. Gorodetsky, A.A.


View Full Document

Stanford EE 340 - Syllabus

Documents in this Course
Load more
Download Syllabus
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Syllabus and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Syllabus 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?