DOC PREVIEW
UCR MATH 144 - The natural numbers and the integers

This preview shows page 1-2 out of 5 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Exercises for Unit V (The basic number systems of mathematics)V.1 : The natural numbers and the integers(Halmos, §§ 11 – 13; Lipschutz, §§ 2.1, 2.7 – 2.9)Problems for study . Lipschutz : 2.88, 2.92(c)Exercises to work . 1. Suppose we are given a quadratic equation x 2 + b x + c = 0 where b and c are integers, and suppose that r is a rational root of this equation. Prove that r is an integer. [ Hint : Write the quadratic polynomial as (x – r)(x – s) and explain why r + s and rs must be integers. Why does this imply that s is also rational? Next, using the quadratic formula show that (r – s)2 = b 2 – 4 c and hence the right hand side is a is a perfect square, say d 2. Next, write r = p / q where p and q are relatively prime, and apply the quadratic formula to show that the absolute value of the denominator |q| is at most 2. Why do this and the integrality of rs imply that b and d must be both even or both odd? Now use the quadratic formula once more to show that the root r must be an integer; i.e., we must have |q| = 1. ]2. Explain how one can prove irrationality of the square root of 2 from a special case of the preceding result.3. Let n be a positive integer. Explain why the set A of all integers greater than or equal to – n is well – ordered. [ Hint : If B is a nonempty subset of A, consider the set C of all integers of the form n + b where b  B. ] I V.2 : Finite induction and recursion(Halmos, §§ 11 – 13; Lipschutz, §§ 1.11, 4.6, 11.1 – 11.7)Problems for study . Lipschutz : 1.36, 1.74 – 1.76Exercises to work . 1. Prove by induction that for each nonnegative integer k, the integer k2 + 5k is even.2. Prove the summation formula 13 + … n 3 = (1 + … + n) 2 = n2 (n + 1) 2 / 4.3. The number n! (n factorial), which is the number of permutations of the first n positive integers, is defined recursively by 0! = 1 and n! = n  (n – 1) ! for all n > 0. Prove that n!  n n for all n > 0 and strict inequality holds if n > 1.4. The so – called sequence of Fibonacci numbers is given recursively by the formulas F0 = F1 = 1 and Fn = F n – 1 + F n – 2 for n > 1. Find a function H as in the recursive definition theorem which can be used to define the sequence of Fibonacci numbers. [ Hint : The cases n = 1 and n > 1 must be handled separately. ]Comment: Fibonacci (c. 1170 – 1250), whose real name was Leonardo of Pisa, made many extremely significant contributionsto mathematics, but it is ironic that he is often best known today for mentioning a sequence that had been previously introduced byothers and which really plays an extremely minor part in his work as a whole. Further information on these historical issues is givenat the following online site:http://math.ucr.edu/~res/math153/history07.pdf5. An amortized loan is paid off in equal periodic payments of P units. Assume that the periodic interest rate over the time period is (100  r) % . If L is the loan amountand xn is the balance remaining after the nth payment, give a recursive formula for xn .Comment: Usually one is given L and r, and the objective is to find a value of P such that the balance is equal to zero after the M th paymentfor some fixed M (which is normally a multiple of 12). In order to do this, one needs to derive a closed formula for xn and solve for P in terms of L, r and M.6. Let (N, ) be a system satisfying the Peano axioms with zero element 0N. Prove that 0N is the only element that is not in the image of [ Hint : Apply the third Peano axiom fo the set A = { 0N } (N). ]I V.3 : Finite sets(Halmos, §§ 11 – 13; Lipschutz, §§ 1.8, 3.2)Problems for study . Lipschutz : 1.25, 1.26Exercises to work . 1. Suppose that we are given two finite sets A and B and a subset C of A  B such that the following hold:(1) Each element of A is the first coordinate for some element of C.(2) For each a  A , the number of elements in C  [ { a }  B ] is equal to a fixed constant k.Prove that the number of elements in C is equal to k  |A| , where |A| denotes the number of elements in A. [ Hint : Use induction on the number of elements in A. ]2. Use the preceding exercise to compute the number of ordered pairs (x, y) where x and y are integers between 1 and 10 such that one is even and the other is odd.3. Determine the number of Boolean subalgebras of P(X) if X is the set {1, 2, 3, 4}.How many have exactly two atomic subsets?I V.4 : The real numbers(Lipschutz, §§ 2.2 – 2.6, 7.7)Problems for study . Lipschutz : 2.14 – 2.15, 2.17, 2.25 – 2.28, 2.61 – 2.62, 2.67, 2.71 – 2.72, 2.73(d), 7.22, 7.25 – 7.26, 7.62 – 7.63, 7.66Exercises to work . 1. Let A be a set of real numbers containing exactly two elements. Explain why A isbounded, find the least upper bound and greatest lower bound, and prove that your answers are correct.2. Let A and B be a subsets of the real numbers with least upper bounds u and v. Prove that their union has a least upper bound, and express it in terms of u and v. 3. Let A be the set of negative real numbers. Prove that 0 is equal to the least upper bound of A. [ Hint : One needs to check that 0 is an upper bound and if x < 0 then 0 is not an upper bound; i.e., there is some y  A such that x < y. ]4. Let A be a set of real numbers with least upper bound x. Show that there is a sequence of elements xn in A whose limit is equal to x; note that the terms of a sequence need not be distinct. [ Hint : Given a positive integer n, why is there an element y of A such that y > a – (1/n)? ] I V.5 : Familiar properties of the real numbers(Lipschutz, §§ 2.2, 4.5)Problems for study . Lipschutz : 4.55, 6.17Exercises to work . 1. Suppose that a and b are real numbers such that a < b. Prove that there are infinitely many rational numbers in the open interval (a, b).2. For an arbitrary base N, one has “base N decimal – like” expansions analogous to …


View Full Document

UCR MATH 144 - The natural numbers and the integers

Download The natural numbers and the integers
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view The natural numbers and the integers and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view The natural numbers and the integers 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?